Nuclear norm of higher-order tensors

We establish several mathematical and computational properties of the nuclear norm for higher-order tensors. We show that like tensor rank, tensor nuclear norm is dependent on the choice of base field --- the value of the nuclear norm of a real 3-tensor depends on whether we regard it as a real 3-tensor or a complex 3-tensor with real entries. We show that every tensor has a nuclear norm attaining decomposition and every symmetric tensor has a symmetric nuclear norm attaining decomposition. There is a corresponding notion of nuclear rank that, unlike tensor rank, is upper semicontinuous. We establish an analogue of Banach's theorem for tensor spectral norm and Comon's conjecture for tensor rank --- for a symmetric tensor, its symmetric nuclear norm always equals its nuclear norm. We show that computing tensor nuclear norm is NP-hard in several sense. Deciding weak membership in the nuclear norm unit ball of 3-tensors is NP-hard, as is finding an $\varepsilon$-approximation of nuclear norm for 3-tensors. In addition, the problem of computing spectral or nuclear norm of a 4-tensor is NP-hard, even if we restrict the 4-tensor to be bi-Hermitian, bisymmetric, positive semidefinite, nonnegative valued, or all of the above. We discuss some simple polynomial-time approximation bounds. As an aside, we show that the nuclear $(p,q)$-norm of a matrix is NP-hard in general but can be computed in polynomial-time if $p=1$, $q = 1$, or $p=q=2$, with closed-form expressions for the nuclear $(1,q)$- and $(p,1)$-norms.

[1]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[2]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[3]  S. Banach Über homogene Polynome in ($L^{2}$) , 1938 .

[4]  R. Schatten,et al.  A theory of cross-spaces , 1950 .

[5]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[6]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[7]  T. TerzioĞglu,et al.  On Schwartz spaces , 1969 .

[8]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[9]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[10]  Yau-chuen Wong,et al.  Schwartz spaces, nuclear spaces, and tensor products , 1979 .

[11]  A. Wickstead,et al.  SCHWARTZ SPACES, NUCLEAR SPACES AND TENSOR PRODUCTS (Lecture Notes in Mathematics 726) , 1980 .

[12]  Shmuel Friedland,et al.  Variation of tensor powers and spectrat , 1982 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[15]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[16]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[17]  Jean-Luc Brylinski Algebraic measures of entanglement , 2000 .

[18]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[19]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[20]  Domingo García,et al.  On Norm Attaining Polynomials , 2003 .

[21]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[22]  F. Zak Determinants of Projective Varieties and their Degrees , 2004 .

[23]  V. L. Popov,et al.  Algebraic Transformation Groups and Algebraic Varieties , 2004 .

[24]  L. Hogben Handbook of Linear Algebra , 2006 .

[25]  Daureen Steinberg COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .

[26]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[27]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[28]  Alexander Olshevsky,et al.  Matrix P-norms are NP-hard to approximate if p ≠1,2,∞ , 2009 .

[29]  Pierre Comon,et al.  Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.

[30]  Julien M. Hendrickx,et al.  Matrix p-Norms Are NP-Hard to Approximate If p!=q1, 2, INFINITY , 2010, SIAM J. Matrix Anal. Appl..

[31]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[32]  A. Laptev Analysis and applications , 2010 .

[33]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[34]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[35]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[36]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[37]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[38]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[39]  Shmuel Friedland,et al.  Matrices: Algebra, Analysis And Applications , 2015 .

[40]  Shmuel Friedland,et al.  The Computational Complexity of Duality , 2016, SIAM J. Optim..

[41]  Harm Derksen,et al.  On the Nuclear Norm and the Singular Value Decomposition of Tensors , 2013, Foundations of Computational Mathematics.

[42]  Pierre Comon,et al.  Semialgebraic Geometry of Nonnegative Tensor Rank , 2015, SIAM J. Matrix Anal. Appl..

[43]  S. Friedland,et al.  Theoretical and computational aspects of entanglement , 2017, 1705.07160.

[44]  Lek-Heng Lim,et al.  Fast Structured Matrix Computations: Tensor Rank and Cohn–Umans Method , 2016, Found. Comput. Math..