Nuclear norm of higher-order tensors
暂无分享,去创建一个
[1] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[2] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[3] S. Banach. Über homogene Polynome in ($L^{2}$) , 1938 .
[4] R. Schatten,et al. A theory of cross-spaces , 1950 .
[5] T. Motzkin,et al. Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.
[6] A. Grothendieck,et al. Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .
[7] T. TerzioĞglu,et al. On Schwartz spaces , 1969 .
[8] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[9] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[10] Yau-chuen Wong,et al. Schwartz spaces, nuclear spaces, and tensor products , 1979 .
[11] A. Wickstead,et al. SCHWARTZ SPACES, NUCLEAR SPACES AND TENSOR PRODUCTS (Lecture Notes in Mathematics 726) , 1980 .
[12] Shmuel Friedland,et al. Variation of tensor powers and spectrat , 1982 .
[13] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[14] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[15] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[16] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[17] Jean-Luc Brylinski. Algebraic measures of entanglement , 2000 .
[18] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[19] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[20] Domingo García,et al. On Norm Attaining Polynomials , 2003 .
[21] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[22] F. Zak. Determinants of Projective Varieties and their Degrees , 2004 .
[23] V. L. Popov,et al. Algebraic Transformation Groups and Algebraic Varieties , 2004 .
[24] L. Hogben. Handbook of Linear Algebra , 2006 .
[25] Daureen Steinberg. COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .
[26] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[27] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[28] Alexander Olshevsky,et al. Matrix P-norms are NP-hard to approximate if p ≠1,2,∞ , 2009 .
[29] Pierre Comon,et al. Multiarray Signal Processing: Tensor decomposition meets compressed sensing , 2010, ArXiv.
[30] Julien M. Hendrickx,et al. Matrix p-Norms Are NP-Hard to Approximate If p!=q1, 2, INFINITY , 2010, SIAM J. Matrix Anal. Appl..
[31] Sevag Gharibian,et al. Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..
[32] A. Laptev. Analysis and applications , 2010 .
[33] A. Defant,et al. Tensor Norms and Operator Ideals , 2011 .
[34] S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.
[35] Charles R. Johnson,et al. Matrix Analysis, 2nd Ed , 2012 .
[36] Lek-Heng Lim. Tensors and Hypermatrices , 2013 .
[37] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[38] Pierre Comon,et al. Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.
[39] Shmuel Friedland,et al. Matrices: Algebra, Analysis And Applications , 2015 .
[40] Shmuel Friedland,et al. The Computational Complexity of Duality , 2016, SIAM J. Optim..
[41] Harm Derksen,et al. On the Nuclear Norm and the Singular Value Decomposition of Tensors , 2013, Foundations of Computational Mathematics.
[42] Pierre Comon,et al. Semialgebraic Geometry of Nonnegative Tensor Rank , 2015, SIAM J. Matrix Anal. Appl..
[43] S. Friedland,et al. Theoretical and computational aspects of entanglement , 2017, 1705.07160.
[44] Lek-Heng Lim,et al. Fast Structured Matrix Computations: Tensor Rank and Cohn–Umans Method , 2016, Found. Comput. Math..