Lagrangian relaxation of the generic materials and operations planning model
暂无分享,去创建一个
Jairo R. Coronado-Hernandez | G. Rius-Sorolla | J. Maheut | J. P. Garcia-Sabater | Jairo R. Coronado-Hernández | G. Rius-Sorolla | J. P. García-Sabater | J. Maheut
[1] José Pedro García Sabater,et al. Heuristic for Material and Operations Planning in Supply Chains with Alternative Product Structure , 2017 .
[2] P. Wolfe. Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .
[3] Jean-Louis Goffin,et al. On convergence rates of subgradient optimization methods , 1977, Math. Program..
[4] Shuzhi Sam Ge,et al. Allocating Resources in Multiagent Flowshops With Adaptive Auctions , 2011, IEEE Transactions on Automation Science and Engineering.
[5] Julien Maheut. Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro , 2013 .
[6] Bart De Schutter,et al. Accelerated gradient methods and dual decomposition in distributed model predictive control , 2013, Autom..
[7] Tianyou Chai,et al. A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process , 2014, Eur. J. Oper. Res..
[8] Bjarne A. Foss,et al. Oil production optimization - A piecewise linear model, solved with two decomposition strategies , 2010, Comput. Chem. Eng..
[9] D. Bertsekas. Nondifferentiable optimization via approximation , 1975 .
[10] Francisco Barahona,et al. The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..
[11] Richard M. Karp,et al. The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..
[12] Iftekhar A. Karimi,et al. Planning and scheduling of parallel semicontinuous processes. 1. Production planning , 1997 .
[13] Danielle Zyngier,et al. Hierarchical decomposition heuristic for scheduling: Coordinated reasoning for decentralized and distributed decision-making problems , 2008, Comput. Chem. Eng..
[14] Marshall L. Fisher,et al. The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..
[15] Rita Streblow,et al. Decentralized scheduling strategy of heating systems for balancing the residual load , 2015 .
[16] Arthur M. Geoffrion,et al. Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.
[17] Luiz Antonio Nogueira Lorena,et al. Lagrangean/surrogate relaxation for generalized assignment problems , 1999, Eur. J. Oper. Res..
[18] Philip Wolfe,et al. Validation of subgradient optimization , 1974, Math. Program..
[19] Masahiro Inuiguchi,et al. Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness , 2010, Comput. Oper. Res..
[20] Zukui Li,et al. Capacity expansion planning through augmented Lagrangian optimization and scenario decomposition , 2012 .
[21] L. J. Savage,et al. Three Problems in Rationing Capital , 1955 .
[22] Jiehong Kong,et al. Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain , 2014, Int. Trans. Oper. Res..
[23] Pilar I. Vidal-Carreras,et al. Economic lot scheduling with deliberated and controlled coproduction , 2012, Eur. J. Oper. Res..
[24] Hanif D. Sherali,et al. Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs , 1996, Oper. Res. Lett..
[25] V. Jeet,et al. Lagrangian relaxation guided problem space search heuristics for generalized assignment problems , 2007, Eur. J. Oper. Res..
[26] Niels Kjølstad Poulsen,et al. A Dantzig-Wolfe Decomposition Algorithm for Linear Economic Model Predictive Control of Dynamically Decoupled Subsystems , 2014 .
[27] Monique Guignard-Spielberg,et al. Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..
[28] B. J. Lageweg,et al. Surrogate duality relaxation for job shop scheduling , 1983, Discret. Appl. Math..
[29] Olga Battaïa,et al. An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem , 2015, Comput. Oper. Res..
[30] C. Beltran,et al. Unit Commitment by Augmented Lagrangian Relaxation: Testing Two Decomposition Approaches , 2002 .
[31] T. Chang. Comments on “Surrogate Gradient Algorithm for Lagrangian Relaxation” , 2008 .
[32] Mohammad Marufuzzaman,et al. Sustainable network design for multi-purpose pellet processing depots under biomass supply uncertainty , 2017, Comput. Ind. Eng..
[33] George B. Dantzig,et al. Decomposition Principle for Linear Programs , 1960 .
[34] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[35] S. Agmon. The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.
[36] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems , 1962 .
[37] C. Maranas,et al. A Hierarchical Lagrangean Relaxation Procedure for Solving Midterm Planning Problems , 1999 .
[38] Jairo Rafael,et al. Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. , 2016 .
[39] Grit Walther,et al. Negotiation-based coordination in product recovery networks , 2008 .
[40] Marshall L. Fisher,et al. An Applications Oriented Guide to Lagrangian Relaxation , 1985 .
[41] Hartmut Stadtler,et al. Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies , 2010 .
[42] Hai Jiang,et al. A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain , 2012 .
[43] D. Bertsekas. Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .
[44] Ali Diabat,et al. A Lagrangian relaxation approach for solving the integrated quay crane assignment and scheduling problem , 2015 .
[45] Mikko Kurttila,et al. An Application of a Reduced Cost Approach to Spatial Forest Planning , 2009 .
[46] José P. García-Sabater,et al. Modelo estocástico para planificar cadenas de suministro con productos de ciclos de vida cortos , 2010 .
[47] Steven Y. P. Lu,et al. A hybrid solution to collaborative decision-making in a decentralized supply-chain , 2012 .
[48] Julio Juan García Sabater,et al. Modelo de optimización estocástica para la planificación de cadenas de suministro para productos con ciclo de vida cortos. , 2010 .
[49] J. E. Rooda,et al. An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers , 2006 .
[50] Vladimir Marianov,et al. Lagrangean Relaxation-Based Techniques for Solving Facility Location Problems , 2011 .
[51] In-Jae Jeong,et al. A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time , 2009 .
[52] G. Bitran,et al. Computational Complexity of the Capacitated Lot Size Problem , 1982 .
[53] Richard M. Karp,et al. The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..
[54] Giovanna Miglionico,et al. On solving the Lagrangian dual of integer programs via an incremental approach , 2009, Comput. Optim. Appl..
[55] Josefa Mula,et al. The Generic Materials and Operations Planning (GMOP) Problem Solved Iteratively: A Case Study in Multi-site Context , 2011, APMS.
[56] Jesús Sáez,et al. Solving linear programming relaxations associated with Lagrangean relaxations by Fenchel cutting planes , 2000, Eur. J. Oper. Res..
[57] Mikael Rönnqvist,et al. Use of Lagrangian decomposition in supply chain planning , 2011, Math. Comput. Model..
[58] D. Bertsekas,et al. Convergen e Rate of In remental Subgradient Algorithms , 2000 .
[59] Boris Polyak. Minimization of unsmooth functionals , 1969 .
[60] Ignacio E. Grossmann,et al. A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures , 2008, J. Glob. Optim..
[61] José Alberto Araúzo Araúzo,et al. Programación y Control de Sistemas de Fabricación Flexibles: un Enfoque Holónico , 2015 .
[62] Claude Lemaréchal,et al. Lagrangian Relaxation , 2000, Computational Combinatorial Optimization.
[63] Martin J. Wainwright,et al. Randomized smoothing for (parallel) stochastic optimization , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[64] José P. García-Sabater,et al. A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem , 2013 .
[65] George Q. Huang,et al. Optimal configuration of cluster supply chains with augmented Lagrange coordination , 2015, Comput. Ind. Eng..
[66] Lucio Grandinetti,et al. Auction algorithms for decentralized parallel machine scheduling , 2006, Parallel Comput..
[67] Hartmut Stadtler,et al. Supply Chain Management and Advanced Planning , 2000 .
[68] P. Camerini,et al. On improving relaxation methods by modified gradient techniques , 1975 .
[69] Takahito Kuno,et al. A Lagrangian Based Branch-and-Bound Algorithm for Production-transportation Problems , 2000, J. Glob. Optim..
[70] X. Zhao,et al. Surrogate Gradient Algorithm for Lagrangian Relaxation , 1999 .