Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death

[1]  V. Shoshan-Barmatz,et al.  The mitochondrial voltage-dependent anion channel 1 in tumor cells. , 2015, Biochimica et biophysica acta.

[2]  L. Galluzzi,et al.  Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition , 2015, Oncogene.

[3]  J. Molkentin,et al.  Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. , 2015, Cell metabolism.

[4]  Tingting Du,et al.  α-Synuclein amino terminus regulates mitochondrial membrane permeability , 2014, Brain Research.

[5]  V. K. Rao,et al.  Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. , 2014, Biochimica et biophysica acta.

[6]  Yuehua Wu,et al.  Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. , 2014, Biochemical and biophysical research communications.

[7]  P. Licznerski,et al.  An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore , 2014, Proceedings of the National Academy of Sciences.

[8]  L. Galluzzi,et al.  Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition , 2014, Oncogene.

[9]  Hui Xu,et al.  The mitochondrial cyclophilin D/p53 complexation mediates doxorubicin-induced non-apoptotic death of A549 lung cancer cells , 2013, Molecular and Cellular Biochemistry.

[10]  Bo Chen,et al.  Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. , 2013, Biochemical and biophysical research communications.

[11]  V. Shoshan-Barmatz,et al.  The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. , 2013, Biochimica et biophysica acta.

[12]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[13]  Shirley ShiDu Yan,et al.  Cyclophilin D Deficiency Rescues Axonal Mitochondrial Transport in Alzheimer’s Neurons , 2013, PloS one.

[14]  Chen Li,et al.  Oxygen Glucose Deprivation (OGD)/Re-Oxygenation-Induced In Vitro Neuronal Cell Death Involves Mitochondrial Cyclophilin-D/P53 Signaling Axis , 2013, Neurochemical Research.

[15]  Chien-Huang Lin,et al.  Inhibition of Mitochondria- and Endoplasmic Reticulum Stress-Mediated Autophagy Augments Temozolomide-Induced Apoptosis in Glioma Cells , 2012, PloS one.

[16]  U. Moll,et al.  p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis , 2012, Cell.

[17]  Wenzhi Tan VDAC blockage by phosphorothioate oligonucleotides and its implication in apoptosis. , 2012, Biochimica et biophysica acta.

[18]  C. Baines,et al.  The role of VDAC in cell death: friend or foe? , 2012, Biochimica et biophysica acta.

[19]  M. Russo,et al.  SIRT3 protects from hypoxia and staurosporine-mediated cell death by maintaining mitochondrial membrane potential and intracellular pH , 2012, Cell Death and Differentiation.

[20]  Daniel P. Stewart,et al.  Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration , 2012, Nature Cell Biology.

[21]  A. Halestrap,et al.  The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore , 2012, Mitochondrion.

[22]  L. Kaczmarek,et al.  Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential , 2011, The Journal of cell biology.

[23]  Shanta M. Messerli,et al.  Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase , 2011, Nature Cell Biology.

[24]  C. Chinopoulos,et al.  Modulation of F0F1‐ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels , 2011, The FEBS journal.

[25]  D. Sinclair,et al.  Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy , 2010, Aging.

[26]  Jinhwa Lee Novel combinational treatment of cisplatin with cyclophilin a inhibitors in human heptocellular carcinomas , 2010, Archives of pharmacal research.

[27]  J. Farber,et al.  Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. , 2010, The Journal of clinical investigation.

[28]  M. Zoratti,et al.  Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore , 2010, FEBS letters.

[29]  D. Xing,et al.  Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3 activation. , 2010, Biochemical and biophysical research communications.

[30]  W. J. Choi,et al.  Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. , 2010, Oncology reports.

[31]  J. G. Pastorino,et al.  Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria , 2010, Journal of Cell Science.

[32]  J. Macdonald,et al.  Closure of VDAC causes oxidative stress and accelerates the Ca(2+)-induced mitochondrial permeability transition in rat liver mitochondria. , 2010, Archives of biochemistry and biophysics.

[33]  C. Bonfils,et al.  Cyclophilin A as negative regulator of apoptosis by sequestering cytochrome c. , 2010, Biochemical and biophysical research communications.

[34]  T. Theruvath,et al.  Mitochondrial calcium and the permeability transition in cell death. , 2009, Biochimica et biophysica acta.

[35]  Elena Bisetto,et al.  Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex* , 2009, The Journal of Biological Chemistry.

[36]  S. Javadov,et al.  Mitochondrial Permeability Transition Pore Opening as a Promising Therapeutic Target in Cardiac Diseases , 2009, Journal of Pharmacology and Experimental Therapeutics.

[37]  U. Moll,et al.  The mitochondrial p53 pathway. , 2009, Biochimica et biophysica acta.

[38]  Jonathan M. Malecki,et al.  Cyclophilin D Interacts with Bcl2 and Exerts an Anti-apoptotic Effect* , 2009, Journal of Biological Chemistry.

[39]  Changlian Zhu,et al.  Developmental Shift of Cyclophilin D Contribution to Hypoxic-Ischemic Brain Injury , 2009, The Journal of Neuroscience.

[40]  J. Medema,et al.  Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion , 2009, Apoptosis.

[41]  C. Che,et al.  Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. , 2008, Cancer research.

[42]  J. Enríquez,et al.  Respiratory active mitochondrial supercomplexes. , 2008, Molecular cell.

[43]  M. Klingenberg The ADP and ATP transport in mitochondria and its carrier. , 2008, Biochimica et biophysica acta.

[44]  A. Halestrap,et al.  The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition* , 2008, Journal of Biological Chemistry.

[45]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[46]  H. Schägger,et al.  Structural organization of mitochondrial ATP synthase. , 2008, Biochimica et biophysica acta.

[47]  S. Sollott,et al.  Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels , 2008, PloS one.

[48]  R. Stuart,et al.  The F1F0-ATP Synthase Complex Influences the Assembly State of the Cytochrome bc1-Cytochrome Oxidase Supercomplex and Its Association with the TIM23 Machinery* , 2008, Journal of Biological Chemistry.

[49]  S. Miyamoto,et al.  Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II , 2008, Cell Death and Differentiation.

[50]  F. X. Pimentel-Muiños,et al.  A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release , 2008, Oncogene.

[51]  T. Seki,et al.  Evolutionarily Conserved Mammalian Adenine Nucleotide Translocase 4 Is Essential for Spermatogenesis* , 2007, Journal of Biological Chemistry.

[52]  M. Colombini,et al.  VDAC closure increases calcium ion flux. , 2007, Biochimica et biophysica acta.

[53]  Long Yu,et al.  Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. , 2007, Biochemical and biophysical research communications.

[54]  J. Malagelada,et al.  Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. , 2007, Gastroenterology.

[55]  D. Bourdette,et al.  Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis , 2007, Proceedings of the National Academy of Sciences.

[56]  Jin Hwan Kim,et al.  Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. , 2007, Cancer research.

[57]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[58]  U. Moll,et al.  Monoubiquitylation promotes mitochondrial p53 translocation , 2007, The EMBO journal.

[59]  S. Grimm,et al.  The permeability transition pore in cell death , 2007, Apoptosis.

[60]  P. Bernardi,et al.  The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis , 2007, Apoptosis.

[61]  Saroj P. Mathupala,et al.  Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria , 2006, Oncogene.

[62]  N. Hay,et al.  Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt , 2006, Oncogene.

[63]  S. Grimm,et al.  The permeability transition pore complex in cancer cell death , 2006, Oncogene.

[64]  N. Pfanner,et al.  Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane , 2006, Science.

[65]  Y. Ohta,et al.  Suppression of Apoptosis by Cyclophilin D via Stabilization of Hexokinase II Mitochondrial Binding in Cancer Cells* , 2006, Journal of Biological Chemistry.

[66]  W. Craigen,et al.  Properties of the permeability transition in VDAC1(-/-) mitochondria. , 2006, Biochimica et biophysica acta.

[67]  Fabio Di Lisa,et al.  The mitochondrial permeability transition from in vitro artifact to disease target , 2006, The FEBS journal.

[68]  J. Hoek,et al.  Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. , 2005, Cancer research.

[69]  Hao Wang,et al.  Effect of cyclophilin A on gene expression in human pancreatic cancer cells. , 2005, American journal of surgery.

[70]  Xiao-Fan Wang,et al.  Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. , 2005, Cancer research.

[71]  B. Chabi,et al.  ANT2 Isoform Required for Cancer Cell Glycolysis , 2005, Journal of bioenergetics and biomembranes.

[72]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Hori,et al.  Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. , 2005, Biochemical and biophysical research communications.

[74]  S. Campello,et al.  The properties of the mitochondrial megachannel in mitoplasts from human colon carcinoma cells are not influenced by Bax , 2005, FEBS letters.

[75]  Alexei Degterev,et al.  Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury , 2005, Nature chemical biology.

[76]  V. Shoshan-Barmatz,et al.  The voltage-dependent anion channel-1 modulates apoptotic cell death , 2005, Cell Death and Differentiation.

[77]  M. Seyfarth,et al.  Gene transfer of the pancaspase inhibitor P35 reduces myocardial infarct size and improves cardiac function , 2005, Journal of Molecular Medicine.

[78]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[79]  M. Nathan,et al.  Cyclosporin A but not FK-506 protects against dopamine-induced apoptosis in the stunned heart. , 2005, The Annals of thoracic surgery.

[80]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[81]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[82]  L. Argaud,et al.  Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. , 2005, Journal of molecular and cellular cardiology.

[83]  D. Iacopetta,et al.  A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution , 2005, FEBS letters.

[84]  M. Zoratti,et al.  Mitochondrial permeability transitions: how many doors to the house? , 2005, Biochimica et biophysica acta.

[85]  James L. Abbruzzese,et al.  Protein Expression Profiles in Pancreatic Adenocarcinoma Compared with Normal Pancreatic Tissue and Tissue Affected by Pancreatitis as Detected by Two-Dimensional Gel Electrophoresis and Mass Spectrometry , 2004, Cancer Research.

[86]  C. Thompson,et al.  Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. , 2004, Molecular cell.

[87]  John J Lemasters,et al.  Role of mitochondrial permeability transition pores in mitochondrial autophagy. , 2004, The international journal of biochemistry & cell biology.

[88]  G. Kroemer,et al.  Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis , 2004, Oncogene.

[89]  M. Crompton,et al.  Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. , 2004, The Biochemical journal.

[90]  S. Campello,et al.  Bax Does Not Directly Participate in the Ca2+-induced Permeability Transition of Isolated Mitochondria* , 2004, Journal of Biological Chemistry.

[91]  M. Soriano,et al.  Desensitization of the Permeability Transition Pore by Cyclosporin A Prevents Activation of the Mitochondrial Apoptotic Pathway and Liver Damage by Tumor Necrosis Factor-α* , 2004, Journal of Biological Chemistry.

[92]  N. Cheong,et al.  Tim50, a Component of the Mitochondrial Translocator, Regulates Mitochondrial Integrity and Cell Death* , 2004, Journal of Biological Chemistry.

[93]  M. Granell,et al.  Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells , 2004, FEBS letters.

[94]  B. Antonsson,et al.  Bid, but Not Bax, Regulates VDAC Channels* , 2004, Journal of Biological Chemistry.

[95]  V. Shoshan-Barmatz,et al.  Glutamate Interacts with VDAC and Modulates Opening of the Mitochondrial Permeability Transition Pore , 2004, Journal of bioenergetics and biomembranes.

[96]  C. Tian,et al.  Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide , 2004, Oncogene.

[97]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[98]  V. Shoshan-Barmatz,et al.  In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. , 2004, The Biochemical journal.

[99]  S. Grimm,et al.  Cyclophilin D, a Component of the Permeability Transition-Pore, Is an Apoptosis Repressor , 2004, Cancer Research.

[100]  N. Hay,et al.  Akt Inhibits Apoptosis Downstream of BID Cleavage via a Glucose-Dependent Mechanism Involving Mitochondrial Hexokinases , 2004, Molecular and Cellular Biology.

[101]  J. Kemp,et al.  The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore* , 2003, Journal of Biological Chemistry.

[102]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[103]  L. Scorrano,et al.  Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[104]  C. Brenner,et al.  The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. , 2003, Current medicinal chemistry.

[105]  Rui Chen,et al.  Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. , 2003, Biochemical and biophysical research communications.

[106]  D. Nicholls,et al.  The Relationship between Free and Total Calcium Concentrations in the Matrix of Liver and Brain Mitochondria* , 2003, Journal of Biological Chemistry.

[107]  Petr Pancoska,et al.  p53 has a direct apoptogenic role at the mitochondria. , 2003, Molecular cell.

[108]  A. Désormeaux,et al.  Blockade of the apoptotic machinery by cyclosporin A redirects cell death toward necrosis in arterial endothelial cells: regulation by reactive oxygen species and cathepsin D , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[109]  M. Prevost,et al.  Bcl-2 and Bax modulate adenine nucleotide translocase activity. , 2003, Cancer research.

[110]  G. Kroemer,et al.  Chemotherapy: targeting the mitochondrial cell death pathway , 2002, Oncogene.

[111]  B. Chernyak,et al.  Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis , 2002, Oncogene.

[112]  A. Halestrap,et al.  Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. , 2002, The Biochemical journal.

[113]  G. Kroemer,et al.  Mitochondrial permeability transition as a novel principle of hepatorenal toxicity in vivo , 2002, Apoptosis.

[114]  Da-Ting Lin,et al.  Mitochondrial Targeted Cyclophilin D Protects Cells from Cell Death by Peptidyl Prolyl Isomerization* , 2002, The Journal of Biological Chemistry.

[115]  J. Hoek,et al.  Mitochondrial Binding of Hexokinase II Inhibits Bax-induced Cytochrome c Release and Apoptosis* , 2002, The Journal of Biological Chemistry.

[116]  Lihua He,et al.  Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? , 2002, FEBS letters.

[117]  Sherry F. Grissom,et al.  The mitochondrial permeability transition initiates autophagy in rat hepatocytes , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[118]  V. Shoshan-Barmatz,et al.  Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. , 2001, The Biochemical journal.

[119]  E. Kandel,et al.  Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. , 2001, Genes & development.

[120]  M. V. Vander Heiden,et al.  Bcl-x l Promotes the Open Configuration of the Voltage-dependent Anion Channel and Metabolite Passage through the Outer Mitochondrial Membrane* , 2001, The Journal of Biological Chemistry.

[121]  K. Csiszȧr,et al.  Intrathecal cyclosporin prolongs survival of late-stage ALS mice , 2001, Brain Research.

[122]  Guido Kroemer,et al.  Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2 , 2001, The Journal of experimental medicine.

[123]  P. Bernardi,et al.  Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart* , 2001, The Journal of Biological Chemistry.

[124]  Y. Tsujimoto,et al.  Essential Role of Voltage-Dependent Anion Channel in Various Forms of Apoptosis in Mammalian Cells , 2001, The Journal of cell biology.

[125]  N. Yamazaki,et al.  Characterization of porin isoforms expressed in tumor cells. , 2000, European journal of biochemistry.

[126]  Y. Tsujimoto,et al.  Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator , 2000, Oncogene.

[127]  V. Mootha,et al.  tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. , 2000, Genes & development.

[128]  N D Marchenko,et al.  Death Signal-induced Localization of p53 Protein to Mitochondria , 2000, The Journal of Biological Chemistry.

[129]  M. V. Heiden,et al.  Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Y. Tsujimoto,et al.  BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Y. Tsujimoto Mitochondria and Cell Death , 2000, Cell Death and Differentiation.

[132]  Gerard I. Evan,et al.  The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant , 2000, Nature Cell Biology.

[133]  J. Martinou,et al.  Bid Induces the Oligomerization and Insertion of Bax into the Outer Mitochondrial Membrane , 2000, Molecular and Cellular Biology.

[134]  P E Hänninen,et al.  Two-photon fluorescence excitation in detection of biomolecules. , 2000, Biochemical Society transactions.

[135]  D. Andrews,et al.  Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator , 2000, Oncogene.

[136]  S. Grimm,et al.  Adenine Nucleotide Translocase-1, a Component of the Permeability Transition Pore, Can Dominantly Induce Apoptosis , 1999, The Journal of cell biology.

[137]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[138]  G. Robertson,et al.  Attenuation of Ischemia-Induced Cellular and Behavioral Deficits by X Chromosome-Linked Inhibitor of Apoptosis Protein Overexpression in the Rat Hippocampus , 1999, The Journal of Neuroscience.

[139]  Masashi Narita,et al.  Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC , 1999, Nature.

[140]  M. Mattson,et al.  Pivotal Role of Mitochondrial Calcium Uptake in Neural Cell Apoptosis and Necrosis , 1999, Journal of neurochemistry.

[141]  A. Halestrap,et al.  Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. , 1999, American journal of physiology. Heart and circulatory physiology.

[142]  T. Chittenden,et al.  Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[143]  M. Crompton,et al.  Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. , 1998, European journal of biochemistry.

[144]  J C Reed,et al.  Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. , 1998, Science.

[145]  D. Brenner,et al.  The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. , 1998, Biochimica et biophysica acta.

[146]  T. Wieloch,et al.  Cyclosporin A, But Not FK 506, Protects Mitochondria and Neurons against Hypoglycemic Damage and Implicates the Mitochondrial Permeability Transition in Cell Death , 1998, The Journal of Neuroscience.

[147]  R. Swerdlow,et al.  Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids. , 1998, Biochemical and biophysical research communications.

[148]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[149]  B. Siesjö,et al.  Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia , 1997, Brain Research.

[150]  G. Kroemer,et al.  Bcl-2 inhibits the mitochondrial release of an apoptogenic protease , 1996, The Journal of experimental medicine.

[151]  J. Lemasters,et al.  The mitochondrial permeability transition: a new pathophysiological mechanism for Reye's syndrome and toxic liver injury. , 1996, The Journal of pharmacology and experimental therapeutics.

[152]  G. Kroemer,et al.  Mitochondrial permeability transition is a central coordinating event of apoptosis , 1996, The Journal of experimental medicine.

[153]  M. Klingenberg,et al.  Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. , 1996, Biochemistry.

[154]  G. Kroemer,et al.  Mitochondrial control of nuclear apoptosis , 1996, The Journal of experimental medicine.

[155]  P. Bernardi,et al.  Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel (*) , 1996, The Journal of Biological Chemistry.

[156]  G. Kroemer,et al.  Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo , 1995, European journal of immunology.

[157]  A. Halestrap,et al.  Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. , 1995, The Biochemical journal.

[158]  M. Colombini,et al.  NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. , 1994, The Journal of biological chemistry.

[159]  B. Hoffmann,et al.  The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. , 1994, The Journal of biological chemistry.

[160]  A. Halestrap,et al.  Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. , 1993, Journal of molecular and cellular cardiology.

[161]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[162]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. , 1979, Archives of biochemistry and biophysics.

[163]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. , 1979, Archives of biochemistry and biophysics.

[164]  P. Pinton,et al.  Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. , 2015, Journal of molecular and cellular cardiology.

[165]  E. Masliah,et al.  Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases , 2007, NeuroMolecular Medicine.

[166]  Lorenzo Galluzzi,et al.  Mitochondrial membrane permeabilization in cell death. , 2007, Physiological reviews.

[167]  A. Paetau,et al.  Apoptosis dominant in the periinfarct area of human ischaemic stroke--a possible target of antiapoptotic treatments. , 2006, Brain : a journal of neurology.

[168]  W. Chiu,et al.  THREE-DIMENSIONAL STRUCTURE BY ELECTRON MICROSCOPY OF THE ATP SYNTHASE IN COMPLEX FORMATION WITH CARRIERS FOR Pi AND ADP/ATP* , 2004 .

[169]  Luca Scorrano,et al.  A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. , 2002, Developmental cell.

[170]  Yanhuazheng,et al.  Essential role of voltage —dependent anion channel (VDAC) in mitochondrial permeability transition and cytochrome C release induced by arsenic trioxide , 2002 .

[171]  J. Hayes,et al.  The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. , 1995, Critical reviews in biochemistry and molecular biology.

[172]  J. Dahlberg,et al.  Molecular biology. , 1977, Science.