Intrinsic electrical properties of spinal motoneurons vary with joint angle

The dendrites of spinal motoneurons amplify synaptic inputs to a marked degree through persistent inward currents (PICs). Dendritic amplification is subject to neuromodulatory control from the brainstem by axons releasing the monoamines serotonin and norepinephrine; however, the monoaminergic projection to the cord is diffusely organized and does not allow independent adjustment of amplification in different motor pools. Using in vivo voltage-clamp techniques, here we show that dendritic PICs in ankle extensor motoneurons in the cat are reduced about 50% by small rotations (±10°) of the ankle joint. This reduction is primarily due to reciprocal inhibition, a tightly focused input shared only among strict muscle antagonists. These results demonstrate how a specific change in limb position can regulate intrinsic cellular properties set by a background of diffuse descending neuromodulation.

[1]  H. Kowarzyk Structure and Function. , 1910, Nature.

[2]  E. A. Pask,et al.  Monographs of the Physiological Society , 1956 .

[3]  M. McGlamery Mammalian Muscle Receptors and Their Central Actions , 1973 .

[4]  J A Stephens,et al.  Tendon organs of cat medial gastrocnemius: responses to active and passive forces as a function of muscle length. , 1975, Journal of neurophysiology.

[5]  Steven P. Miller,et al.  Brain Stem Control of Spinal Mechanisms , 1982 .

[6]  L. Jordan,et al.  Motoneuron input-resistance changes during fictive locomotion produced by stimulation of the mesencephalic locomotor region. , 1985, Journal of neurophysiology.

[7]  S. Keirstead,et al.  A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles , 1985, The Journal of comparative neurology.

[8]  R. E. Burke,et al.  Three‐Dimensional architecture of dendritic trees in type‐identified α‐motoneurons , 1987 .

[9]  H. Hultborn,et al.  Reciprocal Ia inhibition between ankle flexors and extensors in man. , 1987, The Journal of physiology.

[10]  M D Binder,et al.  Analysis of effective synaptic currents generated by homonymous Ia afferent fibers in motoneurons of the cat. , 1988, Journal of neurophysiology.

[11]  O. Kiehn,et al.  Bistability of alpha‐motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5‐hydroxytryptophan. , 1988, The Journal of physiology.

[12]  C. L. Cleland,et al.  Neural mechanisms underlying the clasp-knife reflex in the cat. I. Characteristics of the reflex. , 1990, Journal of neurophysiology.

[13]  D. McCrea,et al.  Evidence for restricted central convergence of cutaneous afferents on an excitatory reflex pathway to medial gastrocnemius motoneurons. , 1990, Journal of neurophysiology.

[14]  E. Jankowska Interneuronal relay in spinal pathways from proprioceptors , 1992, Progress in Neurobiology.

[15]  F. Robinson,et al.  Distribution of rubrospinal synaptic input to cat triceps surae motoneurons. , 1993, Journal of neurophysiology.

[16]  O Kiehn,et al.  Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. , 1993, The Journal of physiology.

[17]  C. Heckman,et al.  Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. , 1996, Journal of neurophysiology.

[18]  J. Hounsgaard,et al.  Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. , 1997, Journal of neurophysiology.

[19]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. , 1998, Journal of neurophysiology.

[20]  Transmitter regulation of plateau properties in turtle motoneurons. , 1998, Journal of neurophysiology.

[21]  D. R. Curtis,et al.  Prolonged GABAB receptor-mediated synaptic inhibition in the cat spinal cord: an in vivo study , 1998, Experimental Brain Research.

[22]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. , 1998, Journal of neurophysiology.

[23]  H Hultborn,et al.  Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[24]  H Hultborn,et al.  Short-term plasticity in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[25]  Distribution of effective synaptic currents in cat triceps surae motoneurons. VI. Contralateral pyramidal tract. , 1998, Journal of neurophysiology.

[26]  T A Abelew,et al.  Rapid spinal mechanisms of motor coordination. , 1999, Exercise and sport sciences reviews.

[27]  L M Jordan,et al.  Dendritic L‐type calcium currents in mouse spinal motoneurons: implications for bistability , 2000, The European journal of neuroscience.

[28]  C. Heckman,et al.  Adjustable Amplification of Synaptic Input in the Dendrites of Spinal Motoneurons In Vivo , 2000, The Journal of Neuroscience.

[29]  D A McCrea,et al.  State‐dependent hyperpolarization of voltage threshold enhances motoneurone excitability during fictive locomotion in the cat , 2001, The Journal of physiology.

[30]  S. Hochman,et al.  Serotonin 5‐HT2 receptor activation induces a long‐lasting amplification of spinal reflex actions in the rat , 2001, The Journal of physiology.

[31]  E. Jankowska Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals , 2001, The Journal of physiology.

[32]  R. Fyffe,et al.  Spinal Motoneurons: Synaptic Inputs and Receptor Organization , 2001 .

[33]  Yan Zhu,et al.  A neural circuit for circadian regulation of arousal , 2001, Nature Neuroscience.

[34]  R K Powers,et al.  Input-output functions of mammalian motoneurons. , 2001, Reviews of physiology, biochemistry and pharmacology.

[35]  B. Jacobs,et al.  Activity of medullary serotonergic neurons in freely moving animals , 2002, Brain Research Reviews.

[36]  M. Raiteri,et al.  International Union of Pharmacology. XXXIII. Mammalian γ-Aminobutyric AcidB Receptors: Structure and Function , 2002, Pharmacological Reviews.

[37]  J. Hounsgaard,et al.  Mechanisms causing plateau potentials in spinal motoneurones. , 2002, Advances in experimental medicine and biology.

[38]  H Hultborn,et al.  Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current , 2003, The Journal of physiology.

[39]  C. Heckman,et al.  Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo. , 2003, Journal of neurophysiology.

[40]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[41]  Robert M. Brownstone,et al.  Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior , 2003, Trends in Neurosciences.

[42]  E. Jankowska,et al.  Modulatory Effects of α1-, α2-, and β-Receptor Agonists on Feline Spinal Interneurons with Monosynaptic Input from Group I Muscle Afferents , 2003, The Journal of Neuroscience.

[43]  C. Heckman,et al.  Active dendritic integration of inhibitory synaptic inputs in vivo. , 2003, Journal of neurophysiology.

[44]  J. Nielsen,et al.  Central control of reciprocal inhibition during fictive dorsiflexion in man , 2004, Experimental Brain Research.

[45]  Hans Hultborn,et al.  Key mechanisms for setting the input-output gain across the motoneuron pool. , 2004, Progress in brain research.

[46]  H. Hultborn,et al.  Voltage-dependent excitation of motoneurones from spinal locomotor centres in the cat , 2004, Experimental Brain Research.

[47]  Brent Fedirchuk,et al.  Monoamines increase the excitability of spinal neurones in the neonatal rat by hyperpolarizing the threshold for action potential production , 2004, The Journal of physiology.

[48]  F. Evans-Martin The Nervous System , 2004 .

[49]  P. K. Rose,et al.  Effect of nonlinear summation of synaptic currents on the input-output properties of spinal motoneurons. , 2005, Journal of neurophysiology.

[50]  A. Pénicaud,et al.  The disynaptic group I inhibition between wrist flexor and extensor muscles revisited in humans , 2005, Experimental Brain Research.

[51]  Xiang Yang Chen,et al.  The Interaction of a New Motor Skill and an Old One: H-Reflex Conditioning and Locomotion in Rats , 2005, The Journal of Neuroscience.

[52]  Xiang Yang Chen,et al.  Operant conditioning of reciprocal inhibition in rat soleus muscle. , 2006, Journal of neurophysiology.