A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method

Abstract This paper investigates solution behaviors under the strong shock interaction for moving mesh schemes based on the one-dimensional Godunov and HLLC Riemann solvers. When the grid motion velocity is close to Lagrangian one, these Godunov methods, which updates the flow parameters directly on the moving mesh without using interpolation, may suffer from numerical shock instability. In order to cure such instability, a new cell centered arbitrary Lagrangian Eulerian (ALE) algorithm is constructed for inviscid, compressible gas flows. The main feature of the algorithm is to introduce a nodal contact velocity and ensure the compatibility between edge fluxes and the nodal flow intrinsically. We establish a new two-dimensional Riemann solver based on the HLLC method (denoted by the ALE HLLC-2D). The solver relaxes the condition that the contact pressures must be the same in the traditional HLLC solver and constructs discontinuous fluxes along each sampling direction of the similarity solution. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy. The resulting ALE scheme has a node instead of grid edge conservation properties. Numerical tests are presented to demonstrate the robustness and accuracy of this new solver. Due to the multi-dimensional information introduced and consistency between the fluxes and nodal contact velocity, the developed ALE algorithm performs well on both quadrilateral and triangular grids and reduces numerical shock instability phenomena.

[1]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[2]  Rémi Abgrall,et al.  Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..

[3]  John K. Dukowicz,et al.  A general topology Godunov method , 1989 .

[4]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[5]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[6]  Boniface Nkonga,et al.  On the conservative and accurate CFD approximations for moving meshes and moving boundaries , 2000 .

[7]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[8]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[9]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[10]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[11]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[12]  In-Seuck Jeung,et al.  Robust HLLC Riemann solver with weighted average flux scheme for strong shock , 2009, J. Comput. Phys..

[13]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[14]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[15]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[16]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[17]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[18]  Alexander Kurganov,et al.  Central‐upwind schemes on triangular grids for hyperbolic systems of conservation laws , 2005 .

[19]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[20]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[21]  Bruno Després,et al.  Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy , 2012, J. Comput. Phys..

[22]  V. Guinot An approximate two-dimensional Riemann solver for hyperbolic systems of conservation laws , 2005 .

[23]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[24]  Boris N. Azarenok Realization of a second-order Godunov's method☆ , 2000 .

[25]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[26]  Chongam Kim,et al.  Cures for the shock instability: development of a shock-stable Roe scheme , 2003 .

[27]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[28]  Guy Capdeville,et al.  A high-order multi-dimensional HLL-Riemann solver for non-linear Euler equations , 2011, J. Comput. Phys..

[29]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[30]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[31]  Wai How Hui,et al.  A unified coordinate system for solving the three-dimensional Euler equations , 1999 .

[32]  C. Zemach,et al.  CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .

[33]  Rainald Löhner,et al.  On the computation of multi-material flows using ALE formulation , 2004 .

[34]  Keiichi Kitamura,et al.  Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers , 2008, J. Comput. Phys..

[35]  Nathaniel R. Morgan,et al.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..

[36]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[37]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[39]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[40]  Jeffrey Grandy Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra , 1999 .

[41]  G. Maenchen,et al.  The Tensor Code , 1963 .

[42]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[43]  James J. Quirk,et al.  A Contribution to the Great Riemann Solver Debate , 1994 .

[44]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[45]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[46]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[47]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[48]  Burton Wendroff,et al.  A two-dimensional HLLE riemann solver and associated godunov-type difference scheme for gas dynamics☆ , 1999 .

[49]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[50]  P. Knupp,et al.  Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .

[51]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[52]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[53]  Jean-Marc Moschetta,et al.  Shock wave numerical structure and the carbuncle phenomenon , 2005 .

[54]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[55]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[56]  Aramais R. Zakharian,et al.  Two-dimensional Riemann solver for Euler equations of gas dynamics , 2001 .

[57]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[58]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[59]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[60]  Philip L. Roe,et al.  Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics , 1986 .

[61]  J. Brackbill An adaptive grid with directional control , 1993 .

[62]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[63]  Pingwen Zhang,et al.  Second-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes , 2008, J. Sci. Comput..

[64]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[65]  Boris N. Azarenok,et al.  Application of moving adaptive grids for numerical solution of 2D nonstationary problems in gas dynamics , 2002 .

[66]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[67]  Jean-Marc Moschetta,et al.  Robustness versus accuracy in shock-wave computations , 2000 .

[68]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[69]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[70]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[71]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .