The Feasible Hyper-encoding Measurement-device-independent Deterministic Secure Quantum Communication Protocol

[1]  Lan Zhou,et al.  Device-Independent Quantum Secure Direct Communication with Single-Photon Sources , 2023, Physical Review Applied.

[2]  Anirban Pathak,et al.  Controlled secure direct quantum communication inspired scheme for quantum identity authentication , 2022, Quantum Information Processing.

[3]  Kejin Wei,et al.  Fiber-based quantum secure direct communication without active polarization compensation , 2022, Science China Physics, Mechanics & Astronomy.

[4]  Zhiwei Sun,et al.  Semi-quantum secure direct communication against collective-dephasing noise , 2022, Quantum Information Processing.

[5]  Lan Zhou,et al.  Measurement-device-independent one-step quantum secure direct communication , 2022, Chinese Physics B.

[6]  Jiahua Wei,et al.  Multi-party deterministic secure quantum communication using d-dimension GHZ state , 2022, Modern Physics Letters B.

[7]  Lan Zhou,et al.  Measurement-device-independent quantum secret sharing with hyper-encoding , 2022, Chinese Physics B.

[8]  L. Yin,et al.  Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states , 2022, Light, science & applications.

[9]  Lan Zhou,et al.  One-step device-independent quantum secure direct communication , 2022, Science China Physics, Mechanics & Astronomy.

[10]  B. Liu,et al.  Decoy-state method for quantum-key-distribution-based quantum private query , 2022, Science China Physics, Mechanics & Astronomy.

[11]  L. Hanzo,et al.  An Evolutionary Pathway for the Quantum Internet Relying on Secure Classical Repeaters , 2022, IEEE Network.

[12]  Yi-Hua Zhou,et al.  Deterministic secure quantum communication based on spatial encoding , 2021, Quantum Information Processing.

[13]  Lan Zhou,et al.  One-step quantum secure direct communication. , 2021, Science bulletin.

[14]  Kejin Wei,et al.  Practical decoy-state quantum secure direct communication , 2021, Science China Physics, Mechanics & Astronomy.

[15]  Geng Chai,et al.  Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping , 2021, Physical Review Applied.

[16]  Wei Wang,et al.  Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground , 2021, Quantum Eng..

[17]  Xianfeng Chen,et al.  A 15-user quantum secure direct communication network , 2021, Light: Science & Applications.

[18]  L. Kwek,et al.  Chip-based quantum key distribution , 2021, AAPPS Bulletin.

[19]  Yu-Guang Yang,et al.  High-capacity measurement-device-independent deterministic secure quantum communication , 2021, Quantum Information Processing.

[20]  Hua-Lei Yin,et al.  Secure quantum secret sharing without signal disturbance monitoring. , 2021, Optics express.

[21]  Zhenbang Rong,et al.  Mediated semi-quantum secure direct communication , 2021, Quantum Information Processing.

[22]  Tian-Yin Wang,et al.  Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states , 2021, Quantum Inf. Process..

[23]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[24]  Tianyin Wang,et al.  Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states , 2021, Quantum Information Processing.

[25]  Wei Zhong,et al.  High-capacity measurement-device-independent quantum secure direct communication , 2020, Quantum Information Processing.

[26]  Wei Zhong,et al.  Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon , 2020, Frontiers of Physics.

[27]  Wei Zhong,et al.  Measurement-device–independent quantum secure direct communication of multiple degrees of freedom of a single photon , 2020, EPL (Europhysics Letters).

[28]  Jian-Wei Pan,et al.  Secure quantum key distribution with realistic devices , 2020 .

[29]  Q. Ai,et al.  Universal linear-optical hyperentangled Bell-state measurement , 2020 .

[30]  S. Su,et al.  Nondestructive Rydberg parity meter and its applications , 2020 .

[31]  Gui-Lu Long,et al.  Device-independent quantum secure direct communication against collective attacks. , 2020, Science bulletin.

[32]  A. Pathak,et al.  Continuous variable direct secure quantum communication using Gaussian states , 2019, Quantum Information Processing.

[33]  Lan Zhou,et al.  Measurement-device-independent quantum key distribution with hyper-encoding , 2019, Science China Physics, Mechanics & Astronomy.

[34]  Tarek A. Elsayed,et al.  Deterministic secure quantum communication with and without entanglement , 2019, Physica Scripta.

[35]  Zheng-Wei Zhou,et al.  Twin-field quantum key distribution over 830-km fibre , 2019, Nature Photonics.

[36]  Gui-Lu Long,et al.  Measurement-device-independent quantum secure direct communication , 2018, Science China Physics, Mechanics & Astronomy.

[37]  Hao Li,et al.  NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature , 2017, Science China Physics, Mechanics & Astronomy.

[38]  Xihan Li,et al.  Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement , 2017 .

[39]  Qing Ai,et al.  Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. , 2016, Optics express.

[40]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[41]  L. Zhang,et al.  NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature , 2016, Science China Physics, Mechanics & Astronomy.

[42]  Tie-Jun Wang,et al.  Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level Λ-type system , 2016, Scientific Reports.

[43]  Qian Liu,et al.  Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators , 2015, 1507.06108.

[44]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[45]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[46]  Anirban Pathak,et al.  Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches , 2014, Quantum Inf. Process..

[47]  Chia-Wei Tsai,et al.  Deterministic quantum communication using the symmetric W state , 2013 .

[48]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[49]  Feihu Xu,et al.  Practical aspects of measurement-device-independent quantum key distribution , 2013, 1305.6965.

[50]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[51]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[52]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[53]  Gerd Leuchs,et al.  Device calibration impacts security of quantum key distribution. , 2011, Physical review letters.

[54]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[55]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[56]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[57]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[58]  Chen Hanwu,et al.  An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication , 2009 .

[59]  Li Dong,et al.  Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test , 2009 .

[60]  Yuan Hao,et al.  Robust Quantum Secure Direct Communication and Deterministic Secure Quantum Communication over Collective Dephasing Noisy Channel , 2008 .

[61]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[62]  Fuguo Deng,et al.  Deterministic secure quantum communication without maximally entangled states , 2006, quant-ph/0606007.

[63]  H. Lo,et al.  Time-shift attack in practical quantum cryptosystems , 2005, Quantum Inf. Comput..

[64]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[65]  Xiang‐Bin Wang,et al.  Beating the photon-number-splitting attack in practical quantum cryptography. , 2004, Physical review letters.

[66]  T. Felbinger,et al.  Comment on 'Secure direct communication with a quantum one-time pad' , 2004, quant-ph/0406115.

[67]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[68]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[69]  W. Hwang Quantum key distribution with high loss: toward global secure communication. , 2002, Physical review letters.

[70]  H. Weinfurter,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001, quant-ph/0101066.

[71]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[72]  Kaoru Shimizu,et al.  Communication channels secured from eavesdropping via transmission of photonic Bell states , 1999 .

[73]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[74]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[75]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[76]  G. Guo,et al.  Twin-field protocols: Towards intercity quantum key distribution without quantum repeaters , 2021 .

[77]  Tao Li,et al.  Deterministic secure quantum communication with double-encoded single photons , 2021, Acta Physica Sinica.

[78]  Lan Zhou,et al.  Feasible high-dimensional measurement-device-independent quantum key distribution , 2021 .