Many interesting things are afoot at the Navy Precision Optical Interferometer

The Navy Precision Optical Interferometer (NPOI) is currently undergoing a fundamental renaissance in its functionality and capabilities. Operationally, its fast delay line (FDL) infrastructure is completing its upgrade from a VME/VxWorks foundation to a modern PC/RTLinux core. The Classic beam combiner is being upgraded with the New Classic FPGA-based backend, and the VISION beam combiner has been upgraded over this past summer with low-noise EMCCD cameras, resulting in substantial gains in sensitivity. Building on those infrastructure improvements, substantial upgrades are also in progress. Three 1-meter PlaneWave CDK1000 telescopes are being delivered to the site, along with their relocatable enclosure-transporters, and stations are being commissioned for those telescopes with baselines ranging from 8 meters to 432 meters. Baseline-wavelength bootstrapping will be implemented on the facility back-end with a near-infrared beam combiner under development. Collectively, these improvements mark substantial progress in taking the facility towards realizing its full intrinsic potential.

[1]  Sergio R. Restaino,et al.  Detection of Faint Companions in the Vicinity of Geostationary Satellites , 2017 .

[2]  J. Armstrong,et al.  Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer , 2017, 1712.08109.

[3]  James A. Benson,et al.  NPOI Measurements of Ten Stellar Oscillators , 2014, 1401.3342.

[4]  James H. Clark,et al.  Method of analysis for determining and correcting mirror deformation due to gravity , 2014 .

[5]  R. T. Zavala,et al.  Dynamical mass of the O-type supergiant in ζ Orionis A , 2013, 1306.0330.

[6]  J. Thomas Armstrong,et al.  NAVY PRECISION OPTICAL INTERFEROMETER OBSERVATIONS OF THE EXOPLANET HOST κ CORONAE BOREALIS AND THEIR IMPLICATIONS FOR THE STAR'S AND PLANET'S MASSES AND AGES , 2013, 1306.4322.

[7]  A. M. Jorgensen,et al.  The new classic instrument for the navy precision optical interferometer , 2016, Astronomical Telescopes + Instrumentation.

[8]  Ellyn K. Baines,et al.  SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS , 2016, 1609.02379.

[9]  Braden E. Hines,et al.  A High Speed Optical Delay Line for Stellar Interferometry , 1992 .

[10]  Stephen A. Rinehart,et al.  MODELING CIRCUMSTELLAR DISKS OF B-TYPE STARS WITH OBSERVATIONS FROM THE PALOMAR TESTBED INTERFEROMETER , 2013 .

[11]  James H. Clark,et al.  Analysis methodology for a piezoelectric-driven optical tracker for ground-based interferometry , 2014, Optics & Photonics - Optical Engineering + Applications.

[12]  D. J. Hutter,et al.  From fringes to the USNO Navy Prototype Optical Interferometer Astrometric Catalog , 2010, Astronomical Telescopes + Instrumentation.

[13]  Rafael Millan-Gabet,et al.  The Michigan Infrared Combiner (MIRC): IR imaging with the CHARA Array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  A. M. Jorgensen,et al.  Multi-baseline chain bootstrapping with new classic at the NPOI , 2016, Astronomical Telescopes + Instrumentation.

[15]  James H. Clark,et al.  Compliant deformable mirror approach for wavefront improvement , 2016 .

[16]  David Mozurkewich,et al.  Developing Geostationary Satellite Imaging at the Navy Precision Optical Interferometer , 2015 .

[17]  John D. Monnier,et al.  MI-6: Michigan interferometry with six telescopes , 2010, Astronomical Telescopes + Instrumentation.

[18]  Henrique R. Schmitt,et al.  Detecting faint nearby companions to geostationary satellites with optical interferometry , 2017, Defense + Security.

[19]  Nicholas M. Elias,et al.  The Navy Prototype Optical Interferometer (NPOI) is Operational , 1997 .

[20]  R. T. Zavala,et al.  THE CIRCUMSTELLAR DISK OF THE Be STAR o AQUARII AS CONSTRAINED BY SIMULTANEOUS SPECTROSCOPY AND OPTICAL INTERFEROMETRY , 2015, 1510.01980.

[21]  R. T. Zavala,et al.  The disk physical conditions of 48 Persei constrained by contemporaneous H{\alpha} spectroscopy and interferometry , 2017 .

[22]  Jeremy Petak,et al.  Elliptically framed tip-tilt mirror optimized for stellar tracking , 2015, SPIE Optical Engineering + Applications.

[23]  J. Armstrong,et al.  The Navy Prototype Optical Interferometer , 1998 .

[24]  John D. Monnier,et al.  Interferometry of $\epsilon$ Aurigae: Characterization of the asymmetric eclipsing disk , 2015 .

[25]  James H. Clark,et al.  Wavefront calibration and correction of an optical train path: a compliant static deformable mirror approach , 2010, Astronomical Telescopes + Instrumentation.

[26]  Sergio R. Restaino,et al.  Monitoring a decade of seeing at the NPOI site with quad cell measurements , 2016, Astronomical Telescopes + Instrumentation.

[27]  Otto G. Franz,et al.  SURVEYING THE BRIGHT STARS BY OPTICAL INTERFEROMETRY. I. A SEARCH FOR MULTIPLICITY AMONG STARS OF SPECTRAL TYPES F-K , 2016, 1609.05254.

[28]  James H. Clark,et al.  THE NAVY PRECISION OPTICAL INTERFEROMETER (NPOI): AN UPDATE , 2013 .

[29]  J. Thomas Armstrong,et al.  NAVY PRECISION OPTICAL INTERFEROMETER MEASUREMENTS OF 10 STELLAR OSCILLATORS , 2014 .

[30]  James A. Benson,et al.  Multiple-baseline detection of a geostationary satellite with the Navy Precision Optical Interferometer , 2015, SPIE Optical Engineering + Applications.

[31]  R. T. Zavala,et al.  Multitechnique testing of the viscous decretion disk model - I. The stable and tenuous disk of the late-type Be star β CMi , 2015, 1510.01229.

[32]  G. van Belle Evolution in High Spatial Resolution Imaging of Faint, Complex Objects , 2017 .

[33]  John D. Monnier,et al.  Five years of imaging at CHARA with MIRC , 2012, Other Conferences.

[34]  D. Mourard,et al.  An interferometric study of the post-AGB binary 89 Herculis I Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array ⋆,⋆⋆ , 2013, 1308.6715.

[35]  James H. Clark,et al.  A support structure for a compliant deformable mirror , 2012, Other Conferences.

[36]  J. D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2005 .

[37]  James H. Clark,et al.  Mirror deformation versus contact area in mounted flat mirrors , 2009, Optical Engineering + Applications.

[38]  K. von Braun,et al.  The expanding fireball of Nova Delphini 2013 , 2014, Nature.

[39]  James H. Clark,et al.  Optimizing the frequency response of a steering mirror mount for interferometry applications , 2009, Optical Engineering + Applications.

[40]  James H. Clark,et al.  Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer , 2016, 1601.00036.

[41]  D. Hutter,et al.  INTERFEROMETRY OF ò AURIGAE : CHARACTERIZATION OF THE ASYMMETRIC ECLIPSING DISK , 2015 .