Pricing Synthetic CDO Tranches in a Model with Default Contagion Using the Matrix-Analytic Approach

We value synthetic CDO tranche spreads, index CDS spreads, kth-to-default swap spreads and tranchelets in an intensity-based credit risk model with default contagion. The default dependence is modelled by letting individual intensities jump when other defaults occur. The model is reinterpreted as a Markov jump process. This allow us to use a matrix-analytic approach to derive computationally tractable closed-form expressions for the credit derivatives that we want to study. Special attention is given to homogenous portfolios. For a fixed maturity of five years, such a portfolio is calibrated against CDO tranche spreads, index CDS spread and the average CDS and FtD spreads, all taken from the iTraxx Europe series. After the calibration, which render perfect fits, we compute spreads for tranchelets and kth-to-default swap spreads for different subportfolios of the main portfolio. We also investigate implied tranche-losses and the implied loss distribution in the calibrated portfolios.

[1]  A New Framework for Dynamic Credit Portfolio Loss Modelling , 2008 .

[2]  Mogens Steffensen,et al.  Bankruptcy, Counterparty Risk, and Contagion , 2006 .

[3]  Mark H. A. Davis,et al.  Modelling default correlation in bond portfolios , 1999 .

[4]  Mark H. A. Davis,et al.  LARGE PORTFOLIO CREDIT RISK MODELING , 2007 .

[5]  H. Rootzén,et al.  Pricing kth-to-Default Swaps Under Default Contagion: The Matrix-Analytic Approach , 2008 .

[6]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[7]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[8]  M. Avellaneda,et al.  CREDIT CONTAGION: PRICING CROSS-COUNTRY RISK IN BRADY DEBT MARKETS , 2001 .

[9]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[10]  T. E. Hull,et al.  Comparing numerical methods for stiff systems of O.D.E:s , 1975 .

[11]  Kay Giesecke,et al.  Cyclical Correlations, Credit Contagion, and Portfolio Losses , 2003 .

[12]  Andrei V. Lopatin,et al.  Two-Dimensional Markovian Model for Dynamics of Aggregate Credit Loss , 2008 .

[13]  Rüdiger Frey,et al.  PRICING AND HEDGING OF PORTFOLIO CREDIT DERIVATIVES WITH INTERACTING DEFAULT INTENSITIES , 2008 .

[14]  Søren Asmussen,et al.  Matrix‐analytic Models and their Analysis , 2000 .

[15]  Fan Yu,et al.  CORRELATED DEFAULTS IN INTENSITY‐BASED MODELS , 2007 .

[16]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[17]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.

[18]  Rüdiger Frey,et al.  Portfolio Credit Risk Models with Interacting Default Intensities: a Markovian Approach , 2004 .

[19]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[20]  P. Schönbucher,et al.  Copula-Dependent Defaults in Intensity Models , 2001 .

[21]  M. Davis,et al.  Infectious defaults , 2001 .

[22]  Alan G. White,et al.  Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation , 2004 .

[23]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[24]  Modelling Default Contagion Using Multivariate Phase-Type Distributions , 2007 .

[25]  Igor Halperin,et al.  BSLP: Markovian Bivariate Spread-Loss Model for Portfolio Credit Derivatives , 2008, 0901.3398.

[26]  Moshe Shaked,et al.  Multivariate Phase-Type Distributions , 1984, Oper. Res..

[27]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[28]  R. Jarrow,et al.  Counterparty Risk and the Pricing of Defaultable Securities , 1999 .

[29]  T. Bielecki,et al.  Chapter 11 Valuation of Basket Credit Derivatives in the Credit Migrations Environment , 2005 .

[30]  David Lando,et al.  Credit Risk Modeling: Theory and Applications , 2004 .

[31]  P. Collin‐Dufresne,et al.  A General Formula for Valuing Defaultable Securities , 2003 .

[32]  Søren Asmussen,et al.  Applied probability and queues, Second Edition , 2003, Applications of mathematics.

[33]  K. Giesecke,et al.  Credit Contagion and Aggregate Losses , 2004 .

[35]  Default Contagion in Large Homogeneous Portfolios , 2007 .

[36]  Cornell University,et al.  Cyclical correlations , credit contagion , and portfolio losses , 2003 .

[37]  Damiano Brigo,et al.  Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model , 2007 .

[38]  Modelling Dynamic Portfolio Credit Risk , 2003 .

[39]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .