Solving Polynomial Systems Equation by Equation

By a numerical continuation method called a diagonal homotopy, one can compute the intersection of two irreducible positive dimensional solution sets of polynomial systems. This paper proposes to use this diagonal homotopy as the key step in a procedure to intersect general solution sets that are not necessarily irreducible or even equidimensional. Of particular interest is the special case where one of the sets is defined by a single polynomial equation. This leads to an algorithm for finding a numerical representation of the solution set of a system of polynomial equations introducing the equations one by one. Preliminary computational experiments show this approach can exploit the special structure of a polynomial system, which improves the performance of the path following algorithms.

[1]  Jan Verschelde,et al.  Pieri Homotopies for Problems in Enumerative Geometry Applied to Pole Placement in Linear Systems Control , 2000, SIAM J. Control. Optim..

[2]  Jan Verschelde,et al.  A Method for Tracking Singular Paths with Application to the Numerical Irreducible Decomposition , 2002 .

[3]  Andrew J. Sommese,et al.  Homotopies for Intersecting Solution Components of Polynomial Systems , 2004, SIAM J. Numer. Anal..

[4]  Jan Verschelde,et al.  PHClab: A MATLAB/Octave Interface to PHCpack , 2008 .

[5]  S. Smale,et al.  The mathematics of numerical analysis : 1995 AMS-SIAM Summer Seminar in Applied Mathematics, July 17-August 11, 1995, Park City, Utah , 1996 .

[6]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[7]  Andrew J. Sommese,et al.  Numerical Irreducible Decomposition Using PHCpack , 2003, Algebra, Geometry, and Software Systems.

[8]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[9]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[10]  Mauro C. Beltrametti,et al.  The Adjunction Theory of Complex Projective Varieties , 1995 .

[11]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[12]  M. Giusti,et al.  Foundations of Computational Mathematics: Kronecker's smart, little black boxes , 2001 .

[13]  Andrew J. Sommese,et al.  An intrinsic homotopy for intersecting algebraic varieties , 2005, J. Complex..

[14]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[15]  Joe Harris,et al.  Curves in projective space , 1982 .

[16]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[17]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[18]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[19]  Gian-Carlo Rota,et al.  Mathematical Essays in honor of Gian-Carlo Rota , 1998 .

[20]  Bernd Sturmfels,et al.  Lattice Walks and Primary Decomposition , 1998 .

[21]  Anthony V. Geramita,et al.  The Curves Seminar at Queen's , 1981 .

[22]  Mauro C. Beltrametti,et al.  A method for tracking singular paths with application to the numerical irreducible decomposition , 2002 .

[23]  M. M. Maza,et al.  On Approximate Linearized Triangular Decompositions , 2007 .

[24]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[25]  BERND STURMFELS,et al.  Numerical Schubert Calculus , 1998, J. Symb. Comput..

[26]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[27]  Marc Moreno Maza,et al.  On approximate triangular decompositions in dimension zero , 2007, J. Symb. Comput..

[28]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[29]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[30]  Serkan Hosten,et al.  Primary Decomposition of Lattice Basis Ideals , 2000, J. Symb. Comput..

[31]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .