Estimating Logistic Regression Parameters for Bivariate Binary Data

SUMMARY Consider bivariate binary data, with possibly different covariates for each marginal binary observation. Suppose that the correlation between paired observations is a nuisance, and the interest lies in estimating logistic regression parameters associated with the covariates. We consider the estimator obtained by using the independence estimating equation, with corrected variance. This estimator can be very efficient and robust compared with maximum likelihood or the estimator of Liang and Zeger. Some comments are made concerning higher dimensional multivariate data.

[1]  A. Pack,et al.  The prevalence of overhanging margins in posterior amalgam restorations and periodontal consequences. , 1990, Journal of clinical periodontology.

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  J. Mathews,et al.  Twin concordance for a binary trait. I. Statistical models illustrated with data on drinking status. , 1983, Acta geneticae medicae et gemellologiae.

[4]  Ross L. Prentice,et al.  Binary Regression Using an Extended Beta-Binomial Distribution, with Discussion of Correlation Induced by Covariate Measurement Errors , 1986 .

[5]  L. Ryan,et al.  The Analysis of Multiple Correlated Binary Outcomes: Application to Rodent Teratology Experiments , 1989 .

[6]  J. Nelder,et al.  The GLIM System Release 3. , 1979 .

[7]  N M Laird,et al.  Maximum likelihood regression methods for paired binary data. , 1990, Statistics in medicine.

[8]  B Rosner,et al.  Multivariate methods in ophthalmology with application to other paired-data situations. , 1984, Biometrics.

[9]  N. Breslow,et al.  Regression analysis of correlated binary data : some small sample results for the estimating equation approach , 1992 .

[10]  Scott L. Zeger,et al.  A Class of Logistic Regression Models for Multivariate Binary Time Series , 1989 .

[11]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[12]  M. D. Hogan,et al.  The impact of litter effects on dose-response modeling in teratology. , 1986, Biometrics.

[13]  C. Le,et al.  Statistical methods for determining risk factors of chronic otitis media with effusion. , 1990, Statistics in medicine.

[14]  Dirk F. Moore,et al.  Modelling the Extraneous Variance in the Presence of Extra‐Binomial Variation , 1987 .

[15]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[16]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[17]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.