The equivalent martingale measure: an introduction to pricing using expectations

We provide a self contained introduction to the risk neutral or martingale approach to the pricing of financial derivatives, while assuming no financial background. This approach to pricing provides a rich source of problems ideally suited to the application of Monte Carlo methods, thus forming a bridge between computational finance and some of the well developed tools available to engineers and scientists. We illustrate the power of the martingale approach by using it to develop the price of the European call option using only elementary methods and briefly discuss the pricing of the American put option as well as interest rate derivatives.

[1]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[2]  Riccardo Rebonato,et al.  Interest-rate option models , 1996 .

[3]  Daniel B. Nelson,et al.  Simple Binomial Processes as Diffusion Approximations in Financial Models , 1990 .

[4]  M. Fu,et al.  Pricing American Options: A Comparison of Monte Carlo Simulation Approaches ⁄ , 2001 .

[5]  P. Boyle Options: A Monte Carlo approach , 1977 .

[6]  Jean-Charles Rochet,et al.  Changes of numéraire, changes of probability measure and option pricing , 1995, Journal of Applied Probability.

[7]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[8]  Joel Franklin,et al.  Mathematical Methods of Economics , 1983 .

[9]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[10]  M. Fu,et al.  Pricing Asian Options: A Comparison Of Analytical And Monte Carlo Methods , 1997 .

[11]  William A. Brock,et al.  Stochastic methods in economics and finance , 1982 .

[12]  Peter H. Ritchken,et al.  Options: Theory, Strategy, and Applications , 1987 .

[13]  Michael C. Fu,et al.  Conditional Monte Carlo , 1997 .

[14]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[15]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[16]  P. Glasserman,et al.  Enhanced Monte Carlo Estimates for American Option Prices , 1997 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[18]  San-Lin Chung,et al.  Pricing American Options Using Monte Carlo Simulation , 2002 .

[19]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[20]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[21]  Joel Franklin,et al.  Methods of Mathematical Economics , 1980 .

[22]  Jeroen F. J. De Munnik The Valuation of Interest Rate Derivative Securities , 1996 .

[23]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[24]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[25]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[26]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[27]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[28]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[29]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[30]  Michael C. Fu,et al.  Sensitivity Analysis for Monte Carlo Simulation of Option Pricing , 1995, Probability in the Engineering and Informational Sciences.