Entropy and the law of small numbers

Two new information-theoretic methods are introduced for establishing Poisson approximation inequalities. First, using only elementary information-theoretic techniques it is shown that, when S/sub n/=/spl Sigma//sub i=1//sup n/X/sub i/ is the sum of the (possibly dependent) binary random variables X/sub 1/,X/sub 2/,...,X/sub n/, with E(X/sub i/)=p/sub i/ and E(S/sub n/)=/spl lambda/, then D(P(S/sub n/)/spl par/Po(/spl lambda/)) /spl les//spl Sigma//sub i=1//sup n/p/sub i//sup 2/+[/spl Sigma//sub i=1//sup n/H(X/sub i/)-H(X/sub 1/,X/sub 2/,...,X/sub n/)] where D(P(S/sub n/)/spl par/Po(/spl lambda/)) is the relative entropy between the distribution of S/sub n/ and the Poisson (/spl lambda/) distribution. The first term in this bound measures the individual smallness of the X/sub i/ and the second term measures their dependence. A general method is outlined for obtaining corresponding bounds when approximating the distribution of a sum of general discrete random variables by an infinitely divisible distribution. Second, in the particular case when the X/sub i/ are independent, the following sharper bound is established: D(P(S/sub n/)/spl par/Po(/spl lambda/))/spl les/1//spl lambda/ /spl Sigma//sub i=1//sup n/ ((p/sub i//sup 3/)/(1-p/sub i/)) and it is also generalized to the case when the X/sub i/ are general integer-valued random variables. Its proof is based on the derivation of a subadditivity property for a new discrete version of the Fisher information, and uses a recent logarithmic Sobolev inequality for the Poisson distribution.

[1]  Neil O ' Connell Information-Theoretic Proof of the Hewitt-Savage zero-one law , 2000 .

[2]  Vydas Čekanavičius On the convergence of Markov binomial to Poisson distribution , 2002 .

[3]  J. Doob Stochastic processes , 1953 .

[4]  S. Bobkov,et al.  On Modified Logarithmic Sobolev Inequalities for Bernoulli and Poisson Measures , 1998 .

[5]  L. Gordon,et al.  Two moments su ce for Poisson approx-imations: the Chen-Stein method , 1989 .

[6]  V. Papathanasiou Some characteristic properties of the Fisher information matrix via Cacoullos-type inequalities , 1993 .

[7]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[8]  Abram Kagan,et al.  A discrete version of the Stam inequality and a characterization of the Poisson distribution , 2001 .

[9]  O. Johnson Entropy inequalities and the Central Limit Theorem , 2000 .

[10]  Oliver Johnson Convergence to the Poisson Distribution , 2004 .

[11]  R. Durrett Probability: Theory and Examples , 1993 .

[12]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[13]  R. R. Bahadur Some Limit Theorems in Statistics , 1987 .

[14]  Iain M. Johnstone,et al.  Une mesure d'information caractérisant la loi de Poisson , 1987 .

[15]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[16]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[17]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[18]  Byoung-Seon Choi,et al.  Conditional limit theorems under Markov conditioning , 1987, IEEE Trans. Inf. Theory.

[19]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[20]  A. Barron Limits of information, Markov chains, and projection , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[21]  P. Deheuvels,et al.  A Semigroup Approach to Poisson Approximation , 1986 .

[22]  Richard F. Serfozo Correction: Compound Poisson Approximations for Sums of Random Variables , 1988 .

[23]  Peter Harremoës,et al.  Binomial and Poisson distributions as maximum entropy distributions , 2001, IEEE Trans. Inf. Theory.

[24]  J. Bekenstein The Limits of information , 2000, gr-qc/0009019.

[25]  J. Linnik An Information-Theoretic Proof of the Central Limit Theorem with Lindeberg Conditions , 1959 .

[26]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .

[27]  David G. Kendall Information theory and the limit-theorem for Markov chains and processes with a countable infinity of states , 1963 .

[28]  Richard F. Serfozo Compound Poisson Approximations for Sums of Random Variables , 1986 .

[29]  A. Rényi On Measures of Entropy and Information , 1961 .

[30]  B. Gnedenko,et al.  Random Summation: Limit Theorems and Applications , 1996 .

[31]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[32]  A. Barbour,et al.  Poisson Approximation , 1992 .

[33]  P. Harremoës The information topology , 2002 .

[34]  Chris A. J. Klaassen,et al.  On an Inequality of Chernoff , 1985 .