EIGENVALUE DISTRIBUTIONS OF VARIANCE COMPONENTS ESTIMATORS IN HIGH-DIMENSIONAL RANDOM EFFECTS MODELS.

We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well-approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally-invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application.

[1]  Yang Lo Normal Families , 2019, Complex Analysis.

[2]  Iain M. Johnstone,et al.  Spiked covariances and principal components analysis in high-dimensional random effects models , 2018, 1806.09529.

[3]  Iain M. Johnstone,et al.  Tracy-Widom at each edge of real covariance estimators , 2017 .

[4]  E. Dobriban,et al.  Sharp detection in PCA under correlations: all eigenvalues matter , 2016, 1602.06896.

[5]  Edgar Dobriban,et al.  Efficient Computation of Limit Spectra of Sample Covariance Matrices , 2015, 1507.01649.

[6]  S. Allen,et al.  The Phenome-Wide Distribution of Genetic Variance , 2015, The American Naturalist.

[7]  Katrina McGuigan,et al.  The distribution of genetic variance across phenotypic space and the response to selection , 2015, Molecular ecology.

[8]  Z. Bai,et al.  Large Sample Covariance Matrices and High-Dimensional Data Analysis , 2015 .

[9]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[10]  D. Paul,et al.  Random matrix theory in statistics: A review , 2014 .

[11]  M. Blows,et al.  Evolutionary Constraints in High-Dimensional Trait Sets , 2014, The American Naturalist.

[12]  Stephen F. Chenoweth,et al.  The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male Drosophila serrata , 2014, Genetics.

[13]  Alexei Onatski,et al.  Signal detection in high dimension: The multispiked case , 2012, 1210.5663.

[14]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[15]  Carlos Vargas,et al.  Free Deterministic Equivalents, Rectangular Random Matrix Models, and Operator-Valued Free Probability Theory , 2011, ArXiv.

[16]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[17]  Jianfeng Yao,et al.  ON ESTIMATION OF THE POPULATION SPECTRAL DISTRIBUTION FROM A HIGH‐DIMENSIONAL SAMPLE COVARIANCE MATRIX , 2010 .

[18]  Philippe Loubaton,et al.  On the Capacity Achieving Covariance Matrix for Frequency Selective MIMO Channels Using the Asymptotic Approach , 2010, IEEE Transactions on Information Theory.

[19]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[20]  B. Walsh,et al.  Abundant Genetic Variation + Strong Selection = Multivariate Genetic Constraints: A Geometric View of Adaptation , 2009 .

[21]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[22]  Mérouane Debbah,et al.  A Deterministic Equivalent for the Analysis of Correlated MIMO Multiple Access Channels , 2009, IEEE Transactions on Information Theory.

[23]  M. Kirkpatrick Patterns of quantitative genetic variation in multiple dimensions , 2009, Genetica.

[24]  Olivier Ledoit,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009, 0911.3010.

[25]  Jay L. Lush,et al.  Animal Breeding Plans , 2008 .

[26]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[27]  Jianfeng Yao,et al.  On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..

[28]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[29]  A. Edelman,et al.  Statistical eigen-inference from large Wishart matrices , 2007, math/0701314.

[30]  M. Blows A tale of two matrices: multivariate approaches in evolutionary biology , 2007, Journal of evolutionary biology.

[31]  Noureddine El Karoui,et al.  Spectrum estimation for large dimensional covariance matrices using random matrix theory , 2006, math/0609418.

[32]  Alexandru Nica,et al.  Lectures on the Combinatorics of Free Probability , 2006 .

[33]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[34]  Aris L. Moustakas,et al.  On the Outage Capacity of Correlated Multiple-Path MIMO Channels , 2005, IEEE Transactions on Information Theory.

[35]  F. Benaych-Georges Rectangular random matrices, related convolution , 2005, math/0507336.

[36]  W. Hachem,et al.  Deterministic equivalents for certain functionals of large random matrices , 2005, math/0507172.

[37]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[38]  O. Johnson Free Random Variables , 2004 .

[39]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[40]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, Communications in Mathematical Physics.

[41]  Theodore P. Hill,et al.  Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.

[42]  B. Collins Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002, math-ph/0205010.

[43]  H. Goldstein,et al.  Multivariate multilevel analyses of examination results , 2002 .

[44]  R. Speicher,et al.  Operator-valued distributions. I. Characterizations of freeness , 2001, math/0201001.

[45]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[46]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[47]  F. Pirchner Genetics and Analysis of Quantitative Traits. , 2000 .

[48]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[49]  Roland Speicher,et al.  Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .

[50]  K. Dykema Amalgamated Free Products of Multi-Matrix Algebras and a Construction of Subfactors of a Free Group Factor , 1995 .

[51]  J. W. Silverstein Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices , 1995 .

[52]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[53]  S. Popa Markov traces on universal Jones algebras and subfactors of finite index , 1993 .

[54]  K. Dykema On Certain Free Product Factors via an Extended Matrix Model , 1992, funct-an/9211011.

[55]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[56]  G. Murphy C*-Algebras and Operator Theory , 1990 .

[57]  N. Barton,et al.  Pleiotropic models of quantitative variation. , 1990, Genetics.

[58]  S. J. Arnold,et al.  VISUALIZING MULTIVARIATE SELECTION , 1989, Evolution; international journal of organic evolution.

[59]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[60]  S. J. Arnold,et al.  THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS , 1983, Evolution; international journal of organic evolution.

[61]  Terence P. Speed,et al.  CUMULANTS AND PARTITION LATTICES1 , 1983 .

[62]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[63]  W. Nance,et al.  Genetic models for the analysis of data from the families of identical twins. , 1976, Genetics.

[64]  S. R. Searle,et al.  A Note on Estimating Covariance Components , 1974 .

[65]  Lynn Roy LaMotte,et al.  Quadratic Estimation of Variance Components , 1973 .

[66]  C. R. Rao,et al.  Estimation of Variance and Covariance Components in Linear Models , 1972 .

[67]  C. Radhakrishna Rao,et al.  Minimum variance quadratic unbiased estimation of variance components , 1971 .

[68]  David R. Brillinger,et al.  The calculation of cumulants via conditioning , 1969 .

[69]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[70]  O. Kempthorne,et al.  The interpretation of twin data. , 1961, American journal of human genetics.

[71]  A. Robertson THE SAMPLING VARIANCE OF THE GENETIC CORRELATION COEFFICIENT , 1959 .

[72]  A. Robertson Experimental Design in the Evaluation of Genetic Parameters , 1959 .

[73]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[74]  Comstock Re,et al.  The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. , 1948 .

[75]  Sewall Wright,et al.  The analysis of variance and the correlations between relatives with respect to deviations from an optimum , 1935, Journal of Genetics.

[76]  Shu-rong Zheng,et al.  Estimation of the Population Spectral Distribution , 2015 .

[77]  Peter McCullagh,et al.  Cumulants and Partition Lattices , 2012 .

[78]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[79]  R. Kadison Non-commutative Conditional expectations and their appli-cations , 2004 .

[80]  F. Hiai Asymptotic Freeness Almost Everywhere for Random Matrices , 1999 .

[81]  D. Voiculescu A strengthened asymptotic freeness result for random matrices with applications to free entropy , 1998 .

[82]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[83]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[84]  H. Umegaki CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .

[85]  J. Dixmier Formes linéaires sur un anneau d'opérateurs , 1953 .

[86]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[87]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .