Splitting theorems and low degrees

We prove that if A is a non-low c.e. set, then there exists noncomputable sets A1 tA2 = A splitting A with A1 non-low.

[1]  Klaus Ambos-Spies,et al.  Anti-Mitotic Recursively Enumerable Sets , 1985, Math. Log. Q..

[2]  Ellen S. Chih Non-splittings of Speedable Sets , 2015, J. Symb. Log..

[3]  R. Soare Recursively enumerable sets and degrees , 1987 .

[4]  Rodney G. Downey,et al.  Splitting Theorems and the Jump Operator , 1998, Ann. Pure Appl. Log..

[5]  Rodney G. Downey,et al.  Completely Mitotic r.e. Degrees , 1989, Ann. Pure Appl. Log..

[6]  Michael Stob,et al.  Splitting Theorems in Recursion Theory , 1993, Ann. Pure Appl. Logic.

[7]  Robert I. Soare,et al.  An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees , 1984 .

[9]  Paul E. Schupp,et al.  Asymptotic density and computably Enumerable Sets , 2013, J. Math. Log..

[10]  Richard E. Ladner,et al.  Mitotic recursively enumerable sets , 1973, Journal of Symbolic Logic.

[11]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[12]  Steffen Lempp,et al.  Jumps of nontrivial splittings of recursively enumerable sets , 1990, Math. Log. Q..

[13]  Richard M. Friedberg,et al.  Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.

[14]  G. Sacks ON THE DEGREES LESS THAN 0 , 1963 .

[15]  Evan J. Griffiths Completely mitotic c.e. degrees and non-jump inversion , 2005, Ann. Pure Appl. Log..

[16]  Rodney G. Downey,et al.  Splitting into degrees with low computational strength , 2018, Ann. Pure Appl. Log..

[17]  Richard E. Ladner,et al.  A completely mitotic nonrecursive r.e. degree , 1973 .