Splitting theorems and low degrees
暂无分享,去创建一个
[1] Klaus Ambos-Spies,et al. Anti-Mitotic Recursively Enumerable Sets , 1985, Math. Log. Q..
[2] Ellen S. Chih. Non-splittings of Speedable Sets , 2015, J. Symb. Log..
[3] R. Soare. Recursively enumerable sets and degrees , 1987 .
[4] Rodney G. Downey,et al. Splitting Theorems and the Jump Operator , 1998, Ann. Pure Appl. Log..
[5] Rodney G. Downey,et al. Completely Mitotic r.e. Degrees , 1989, Ann. Pure Appl. Log..
[6] Michael Stob,et al. Splitting Theorems in Recursion Theory , 1993, Ann. Pure Appl. Logic.
[7] Robert I. Soare,et al. An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees , 1984 .
[9] Paul E. Schupp,et al. Asymptotic density and computably Enumerable Sets , 2013, J. Math. Log..
[10] Richard E. Ladner,et al. Mitotic recursively enumerable sets , 1973, Journal of Symbolic Logic.
[11] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[12] Steffen Lempp,et al. Jumps of nontrivial splittings of recursively enumerable sets , 1990, Math. Log. Q..
[13] Richard M. Friedberg,et al. Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.
[14] G. Sacks. ON THE DEGREES LESS THAN 0 , 1963 .
[15] Evan J. Griffiths. Completely mitotic c.e. degrees and non-jump inversion , 2005, Ann. Pure Appl. Log..
[16] Rodney G. Downey,et al. Splitting into degrees with low computational strength , 2018, Ann. Pure Appl. Log..
[17] Richard E. Ladner,et al. A completely mitotic nonrecursive r.e. degree , 1973 .