Kick-Fukui: A Fukui Function-Guided Method for Molecular Structure Prediction

Here, we introduce a hybrid method, named Kick-Fukui, to explore the potential energy surface (PES) of clusters and molecules using the Coulombic integral between the Fukui functions in the first screening of the best individuals. In the process, small stable molecules or clusters whose combination has the stoichiometry of the explored species are used as assembly units. First, a small set of candidates has been selected from a large and stochastically generated (Kick) population according to the maximum value of the Coulombic integral between the Fukui functions of both fragments. Subsequently, these few candidates are optimized using a gradient method and density functional theory (DFT) calculations. The performance of the program has been evaluated to explore the PES of various systems, including atomic and molecular clusters. In most cases studied, the global minimum (GM) has been identified with a low computational cost. The strategy does not allow to identify the GM of some silicon clusters; however, it predicts local minima very close in energy to the GM that could be used as the initial population of evolutionary algorithms.

[1]  Leo Liberti,et al.  Writing Global Optimization Software , 2006 .

[2]  Matthew A. Addicoat,et al.  Kick: Constraining a stochastic search procedure with molecular fragments , 2009, J. Comput. Chem..

[3]  Gerd Bruno Rocha,et al.  Semiempirical methods do Fukui functions: Unlocking a modeling framework for biosystems , 2020, J. Comput. Chem..

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  R. Parr,et al.  Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Berkowitz Density Functional Approach to Frontier Controlled Reactions , 1987 .

[7]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[8]  Periodane: A wealth of structural possibilities revealed by the Kick procedure , 2007 .

[9]  Jorge Garza,et al.  AUTOMATON: A Program That Combines a Probabilistic Cellular Automata and a Genetic Algorithm for Global Minimum Search of Clusters and Molecules. , 2018, Journal of chemical theory and computation.

[10]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[11]  Hermann Stoll,et al.  Pseudopotential calculations for alkaline-earth atoms , 1985 .

[12]  Gabriel Merino,et al.  Evaluation of restricted probabilistic cellular automata on the exploration of the potential energy surface of Be6B11− , 2020, Theoretical Chemistry Accounts.

[13]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[14]  J. Sánchez‐Márquez,et al.  On Electronegativity, Hardness, and Reactivity Descriptors: A New Property-Oriented Basis Set. , 2020, The journal of physical chemistry. A.

[15]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[16]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[17]  Akbar Nayeem,et al.  A comparative study of the simulated‐annealing and Monte Carlo‐with‐minimization approaches to the minimum‐energy structures of polypeptides: [Met]‐enkephalin , 1991 .

[18]  Nevil Vincent Sidgwick,et al.  Bakerian Lecture: Stereochemical types and valency groups , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  S. Fias,et al.  Conceptual DFT: chemistry from the linear response function. , 2014, Chemical Society reviews.

[20]  P. Fuentealba,et al.  Comparison among four different ways to condense the Fukui function. , 2005, The journal of physical chemistry. A.

[21]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[22]  À. Muñoz-Castro,et al.  [Ge9{Si(SiMe3)3}3{SnPh3}]: a tetrasubstituted and neutral deltahedral nine-atom cluster. , 2012, Angewandte Chemie.

[23]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[24]  Roald Hoffmann,et al.  Selection Rules for Sigmatropic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[25]  A. Alexandrova,et al.  AFFCK: Adaptive Force-Field-Assisted ab Initio Coalescence Kick Method for Global Minimum Search. , 2015, Journal of chemical theory and computation.

[26]  R. Hoffmann Selection Rules for Concerted Cycloaddition Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[27]  Gerd Bruno Rocha,et al.  Elucidating Enzymatic Catalysis Using Fast Quantum Chemical Descriptors , 2020, J. Chem. Inf. Model..

[28]  Shubin Liu,et al.  Conceptual density functional theory: status, prospects, issues , 2020, Theoretical Chemistry Accounts.

[29]  William Tiznado,et al.  A Fukui function‐guided genetic algorithm. Assessment on structural prediction of Sin (n = 12–20) clusters , 2017, J. Comput. Chem..

[30]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[31]  Patricio Fuentealba,et al.  Topological Analysis of the Fukui Function. , 2010, Journal of chemical theory and computation.

[32]  Denitsa Alamanova,et al.  Structure and energetics of nickel, copper, and gold clusters , 2005 .

[33]  C. Cárdenas,et al.  Computing the Fukui Function in Solid-State Chemistry: Application to Alkaline Earth Oxides bulk and Surfaces. , 2020, The journal of physical chemistry. A.

[34]  P. Fuentealba,et al.  On the condensed Fukui function , 2000 .

[35]  Dmitry Yu. Zubarev,et al.  Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..

[36]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[37]  V. Bazterra,et al.  Theoretical study of the adsorption of H on Si n clusters, (n=3-10). , 2005, The Journal of chemical physics.

[38]  R. Johnston,et al.  Global optimization of clusters using electronic structure methods , 2013 .

[39]  William Tiznado,et al.  Proposal of a simple and effective local reactivity descriptor through a topological analysis of an orbital‐weighted fukui function , 2017, J. Comput. Chem..

[40]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[41]  Tarak K Patra,et al.  Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn. , 2017, ACS combinatorial science.

[42]  S. Kaya,et al.  Why and When Is Electrophilicity Minimized? New Theorems and Guiding Rules†. , 2020, The journal of physical chemistry. A.

[43]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[44]  E. Janssens,et al.  Structural Identification of Gold-Doped Silicon Clusters via Far-Infrared Spectroscopy , 2015 .

[45]  P. Fuentealba,et al.  Theoretical study of the surface reactivity of alkaline earth oxides: local density of states evaluation of the local softness. , 2008, The Journal of chemical physics.

[46]  P. Fuentealba,et al.  Assembling Small Silicon Clusters Using Criteria of Maximum Matching of the Fukui Functions. , 2011, Journal of chemical theory and computation.

[47]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[48]  P. Atzberger The Monte-Carlo Method , 2006 .

[49]  M. Saunders Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum , 1987 .

[50]  Weitao Yang,et al.  The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. , 1986, Journal of the American Chemical Society.

[51]  Jun Li,et al.  TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm , 2017, Nano Research.

[52]  P. Geerlings,et al.  Conceptual DFT: the chemical relevance of higher response functions. , 2008, Physical chemistry chemical physics : PCCP.

[53]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Roald Hoffmann,et al.  Stereochemistry of Electrocyclic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[55]  S. Shaik,et al.  How Do Local Reactivity Descriptors Shape the Potential Energy Surface Associated with Chemical Reactions? The Valence Bond Delocalization Perspective , 2020, Journal of the American Chemical Society.

[56]  Goedele Roos,et al.  Enzymatic catalysis: the emerging role of conceptual density functional theory. , 2009, The journal of physical chemistry. B.

[57]  Shridhar R. Gadre,et al.  Structure and Stability of Water Clusters (H2O)n, n ) 8-20: An Ab Initio Investigation , 2001 .

[58]  David J. Wales,et al.  Global minima for water clusters (H2O)n, n ⩽ 21, described by a five-site empirical potential , 2005 .

[59]  P. Ayers,et al.  Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. , 2011, The Journal of chemical physics.

[60]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[61]  Xin Yang,et al.  Structure of the Na(x)Cl(x+1) (-) (x=1-4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. , 2004, The Journal of chemical physics.

[62]  A. Varas,et al.  How relevant is the choice of classical potentials in finding minimal energy cluster conformations , 2013 .

[63]  Paul Geerlings,et al.  The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory. , 2012, Accounts of chemical research.

[64]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[65]  Ronald J. Gillespie,et al.  The electron-pair repulsion model for molecular geometry , 1970 .

[66]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.