Artificial scotoma estimation based on population receptive field mapping

ABSTRACT Population receptive field (pRF) mapping based on functional magnetic resonance imaging (fMRI) is an ideal method for obtaining detailed retinotopic information. One particularly promising application of pRF mapping is the estimation and quantification of visual field effects, for example scotomata in patients suffering from macular dysfunction or degeneration (MD) or hemianopic defects in patients with intracranial dysfunction. However, pRF mapping performance is influenced by a number of factors including spatial and temporal resolution, distribution of dural venous sinuses and patient performance. This study addresses the ability of current pRF methodology to assess the size of simulated scotomata in healthy individuals. The data demonstrate that central scotomata down to a radius of 2.35° (4.7° diameter) visual angle can be reliably estimated in single subjects using high spatial resolution protocols and multi‐channel receive array coils. HighlightsCentral scotomata size assessment by population Receptive Field (pRF) mapping using fMRI.Scotomata size can be reliably estimated down to radius of 2.35° in single subjects.The method could complement microperimetry examinations in patients suffering from macular dysfunction.

[1]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[2]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[3]  William D. Penny,et al.  Bayesian population receptive field modelling , 2016, NeuroImage.

[4]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[5]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[6]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[7]  Georgios A Keliris,et al.  Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects , 2014, Proceedings of the National Academy of Sciences.

[8]  Benjamin de Haas,et al.  Intersession reliability of population receptive field estimates , 2016, NeuroImage.

[9]  Rainer Goebel,et al.  Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility , 2014, PloS one.

[10]  Guillaume S. Masson,et al.  Étude en IRM fonctionnelle 3T de la projection corticale de scotomes rétiniens : résultats préliminaires , 2009 .

[11]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[12]  Christian Windischberger,et al.  Eyetracker-based gaze correction for robust mapping of population receptive fields , 2016, NeuroImage.

[13]  Antony B. Morland,et al.  Population Receptive Field Dynamics in Human Visual Cortex , 2012, PloS one.

[14]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[15]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[16]  Tatsuji Inouye,et al.  Die Sehstörungen bei Schußverletzungen der kortikalen Sehsphäre : nach Beobachtungen an Verwundeten der letzten japanischen Kriege , 1909 .

[17]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.

[18]  Shimon Ullman,et al.  Filling-in of retinal scotomas , 2003, Vision Research.

[19]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Frédéric Lamarque,et al.  Filling-in phenomenon in patients with age-related macular degeneration: differences regarding uni- or bilaterality of central scotoma , 2003, Graefe's Archive for Clinical and Experimental Ophthalmology.

[21]  G. Holmes DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.

[22]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[23]  Serge O. Dumoulin,et al.  Slice-sampled Bayesian PRF mapping , 2016, bioRxiv.

[24]  Ione Fine,et al.  Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. , 2013, Journal of vision.

[25]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[26]  Geraint Rees,et al.  Neural correlates of perceptual completion of an artificial scotoma in human visual cortex measured using functional MRI , 2008, NeuroImage.

[27]  S. Henschen ON THE VISUAL PATH AND CENTRE , 1893 .

[28]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[29]  B. Wandell Foundations of vision , 1995 .

[30]  Jocelyn Faubert,et al.  Macular hole: Perceptual filling-in across central scotomas , 2006, Vision Research.

[31]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.