Hydrogen sensor based on silicon carbide (SiC) MOS capacitor

Silicon carbide (SiC) based MOS capacitor devices are used for gas sensing in high temperature and chemically reactive environments. A SiC MOS capacitor structure used as hydrogen sensor is defined and simulated. The effects of hydrogen concentration, temperature and interface traps on C-V characteristics were analysed. A comparison between structures with different oxide layer types (SiO2, TiO2 and ZnO) and thicknesses (50-10nm) was conducted. The TiO2 based structure has better performance than the SiO2 and ZnO structures. Also, the performance of the SiC MOS capacitor increases at thinner oxide layers.