Common variants at CD 40 and other loci confer risk of rheumatoid arthritis

Soumya Raychaudhuri1–3, Elaine F Remmers4, Annette T Lee5, Rachel Hackett1, Candace Guiducci1, Noël P Burtt1, Lauren Gianniny1, Benjamin D Korman4, Leonid Padyukov6, Fina A S Kurreeman7, Monica Chang8, Joseph J Catanese8, Bo Ding9, Sandra Wong1, Annette H M van der Helm-van Mil7, Benjamin M Neale1,3,10, Jonathan Coblyn2, Jing Cui2, Paul P Tak11, Gert Jan Wolbink12,13, J Bart A Crusius14, Irene E van der Horst-Bruinsma15, Lindsey A Criswell16, Christopher I Amos17, Michael F Seldin18, Daniel L Kastner4, Kristin G Ardlie1,19, Lars Alfredsson9, Karen H Costenbader2, David Altshuler1,3, Tom W J Huizinga7, Nancy A Shadick2, Michael E Weinblatt2, Niek de Vries11, Jane Worthington20, Mark Seielstad21, Rene E M Toes7, Elizabeth W Karlson2, Ann B Begovich8, Lars Klareskog6, Peter K Gregersen5, Mark J Daly1,3 & Robert M Plenge1–3

[1]  Xiayi Ke,et al.  Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13 , 2008, Nature Genetics.

[2]  D. Strachan,et al.  Rheumatoid arthritis association at 6q23 , 2007, Nature Genetics.

[3]  S. Gabriel,et al.  Two independent alleles at 6q23 associated with risk of rheumatoid arthritis , 2007, Nature Genetics.

[4]  B. Franke,et al.  Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases. , 2007, American journal of human genetics.

[5]  Wentian Li,et al.  STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. , 2007, The New England journal of medicine.

[6]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[7]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[8]  Chun Xing Li,et al.  A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression , 2007, Genes and Immunity.

[9]  G. Bishop,et al.  Cooperation between TNF Receptor-Associated Factors 1 and 2 in CD40 Signaling1 , 2006, The Journal of Immunology.

[10]  Elizabeth W Karlson,et al.  Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. , 2005, American journal of human genetics.

[11]  B. Bresnihan,et al.  Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis , 2005, European journal of immunology.

[12]  V. Lougaris,et al.  Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features , 2005, Immunological reviews.

[13]  S. Pearce,et al.  Role of the CD40 locus in Graves' disease. , 2004, Thyroid : official journal of the American Thyroid Association.

[14]  Steven J. Schrodi,et al.  A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. , 2004, American journal of human genetics.

[15]  J. Franklyn,et al.  A single nucleotide polymorphism in the CD40 gene on chromosome 20q (GD‐2) provides no evidence for susceptibility to Graves’ disease in UK Caucasians , 2004, Clinical endocrinology.

[16]  M. Harnett CD40: A Growing Cytoplasmic Tale , 2004, Science's STKE.

[17]  Yusuke Nakamura,et al.  Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis , 2003, Nature Genetics.

[18]  R. Tisch,et al.  CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. , 1997, Journal of immunology.

[19]  T. Ayres,et al.  Herpesvirus Entry Mediator, a Member of the Tumor Necrosis Factor Receptor (TNFR) Family, Interacts with Members of the TNFR-associated Factor Family and Activates the Transcription Factors NF-κB and AP-1* , 1997, The Journal of Biological Chemistry.

[20]  D. Goeddel,et al.  The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Inoue,et al.  CD40 signaling-mediated induction of Bcl-XL, Cdk4, and Cdk6. Implication of their cooperation in selective B cell growth. , 1995, Journal of immunology.

[22]  N. Yoshida,et al.  The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. , 1994, Immunity.

[23]  A. Aruffo,et al.  Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. , 1993, Science.

[24]  P. Stastny Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. , 1978, The New England journal of medicine.

[25]  G. Baier,et al.  PKCtheta cooperates with atypical PKCzeta and PKCiota in NF-kappaB transactivation of T lymphocytes. , 2008, Molecular immunology.

[26]  G. Galbraith,et al.  TRAF1-C5 as a Risk Locus for Rheumatoid Arthritis—A Genomewide Study , 2008 .

[27]  Steven J. Schrodi,et al.  A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis , 2007, PLoS medicine.

[28]  B. Rocha,et al.  High expression of active CDK6 in the cytoplasm of CD8 memory cells favors rapid division , 2004, Nature Immunology.

[29]  A S Rigby,et al.  Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. , 2000, Arthritis and rheumatism.