High-speed nanorobot position control inside a scanning electron microscope

Closed-loop nanorobot control performance is a key challenge for high-throughput nanohandling. The limited update rate, long latency and unpredictable jitter of tracking based on scanning electron microscope images are a major bottleneck for such closed-loop control. A new approach for high-speed position sensing relying on line scans of a scanning electron microscope is adapted into the control loop of a mobile nanorobot. Several evaluation measurements show the system's unprecedented performance in terms of speed, resolution and accuracy. In only 60ms, the employed mobile nanorobot can be positioned with a precision of 20nm in multiple degrees of freedom.

[1]  Sergej Fatikow,et al.  Image Processing Architecture for Real-Time Micro- and Nanohandling Applications , 2009, MVA.

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[4]  Sergej Fatikow,et al.  NanoLab: A nanorobotic system for automated pick-and-place handling and characterization of CNTs , 2009, 2009 IEEE International Conference on Robotics and Automation.

[5]  Toshio Fukuda,et al.  Nanofabrication, Nanoinstrumentation and Nanoassembly by Nanorobotic Manipulation , 2009, Int. J. Robotics Res..

[6]  Bradley J. Nelson,et al.  Tutorial - Robotics in the small Part II: Nanorobotics , 2007, IEEE Robotics & Automation Magazine.

[7]  Dan O. Popa,et al.  A four degree of freedom microrobot with large work volume , 2009, 2009 IEEE International Conference on Robotics and Automation.

[8]  Bradley J. Nelson,et al.  Real-time rigid-body visual tracking in a scanning electron microscope , 2007 .

[10]  Sylvain Martel,et al.  Nanofactories based on a fleet of scientific instruments configured as miniature autonomous robots , 2002 .

[11]  Daniel Jasper High-speed position tracking for nanohandling inside scanning electron microscopes , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  Sergej Fatikow,et al.  Vision feedback in an automatic nanohandling station inside an SEM , 2006, SPIE Optics East.

[13]  Christoph Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[14]  S Fatikow,et al.  Automatic nanohandling station inside a scanning electron microscope , 2008 .

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Sylvain Martel,et al.  Fundamentals of piezoceramic actuation for micrometer and submicrometer motions for the NanoWalker robot , 2000, SPIE Optics East.

[17]  W. Driesen,et al.  Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.

[18]  A.N. Das,et al.  ARRIpede: An Assembled Micro Crawler , 2008, 2008 8th IEEE Conference on Nanotechnology.

[19]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[20]  Stephane Regnier,et al.  Micro manipulation by adhesion with two collaborating mobile micro robots , 2005 .

[21]  Sergej Fatikow,et al.  Carbon Nanotube Detection by Scanning Electron Microscopy , 2009, MVA.

[22]  Sergej Fatikow,et al.  Real-time object tracking for the robot-based nanohandling in a scanning electron microscope , 2006 .

[23]  Urban Simu,et al.  MICRON: Small Autonomous Robot for Cell Manipulation Applications , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  Sergej Fatikow,et al.  Development, Control and Evaluation of a Mobile Platform for Microrobots , 2008 .