Neuronavigation Computerassistierte Neurochirurgie

ZusammenfassungDie Anwendung der stereotaktischen Methode für die Resektion von tiefliegenden Prozessen wird unter dem Begriff „Neuronavigation” in der klinischen Neurochirurgie vehement propagiert. Der Wert dieses unstrittig eleganten Verfahrens zur Lokalisation und Abgrenzung pathologischer Prozesse im ZNS ist bislang nicht durch prospektiv-kontrollierte, randomisierte Studien belegt. Die Methode ist mit einer erheblichen Fehlerbreite bzgl. der intraoperativen Lokalisation auf der Basis präoperativer dreidimensionaler Bilder behaftet („brain shift”). Dem gegenüber ist die klassische rahmengeführte Stereotaxie mit einer Genauigkeit von ±1 mm weiterhin der Gold-Standard für die exakte dreidimensionale Lokalisation eines Prozesses. Wenngleich der Wert der Neuronavigation für kleine, tiefsitzende, insbesondere vaskuläre Prozesse einleuchtet, ist der Wert bei Metastasen und Schädelbasistumoren nur sehr relativ, da hier entweder alternative Therapieverfahren mit gleicher Effizienz bei geringer Morbidität vorliegen oder weil aufgrund anatomischer Gegebenheiten die Neuronavigation entbehrlich ist. Für die derzeit häufigste Anwendung der Neuronavigation, der Gliomchirurgie, ist aus bekannten Gründen, die in der Biologie der Gliome liegen, keine Verbesserung der Operations-ergebnisse zu erwarten.SummaryThe use of stereotactic methods for the resection of subcortical lesions is heavily advoacted in clinical neurosurgery introducing the term „neuronavigation”. Though being an unequivacally elegant technique for the localisation and delineation of pathological lesions in the central nervous system neuronavigation has not been validated by any prospective randomized controlled trial. The method is prone to significant errors as to the intraoperative localisation based upon preoperative threedimensional images. The maximum error can be up to 2.6 cm depending on the extent of the so-called brain shift. In comparison classical frame based stereotaxy has a mean error of ±1 mm and remains the gold standard for the exact threedimensional localisation of a given lesion. The value of neuronavigation is evident for small deep seated vascular lesions. For metastatic tumors or skull base tumors the usefullness is rather marginal because alternative therapies are available with proven and equivalent efficacy and reduced morbidity on one hand, and because of the anatomy of the tumor which makes neuronavigation unnecessary. For the currently most common application of neuronavigation, i.e. surgery of gliomas, no significant improvements of therapeutic results can be expected from neuronavigation. The biology of gliomas limits any mechanical approaches.

[1]  S. Brem,et al.  Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. , 1998, Journal of neurosurgery.

[2]  B A Kall,et al.  Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. , 1987, Journal of neurosurgery.

[3]  P J Kelly Resection of intraventricular tumors via a computer-assisted volumetric stereotactic approach. , 1993, Neurosurgery.

[4]  P F Morrison,et al.  Convection-enhanced delivery of macromolecules in the brain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. Harkness,et al.  Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. , 1998, Journal of neurosurgery.

[6]  K. Takakura,et al.  Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. , 1997, Neurosurgery.

[7]  C. Nimsky,et al.  Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. , 1998, Neurosurgery.

[8]  P. Kleihues,et al.  Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. , 1988, Journal of neurosurgery.

[9]  A novel computer-assisted volumetric stereotactic approach for resecting tumors of the posterior parahippocampal gyrus. , 1996, Journal of neurosurgery.

[10]  C. Clancy,et al.  Outcomes Research: Measuring the End Results of Health Care , 1998, Science.

[11]  J. Patrick Intraoperative Brain Shift and Deformation: A Quantitative Analysis of Cortical Displacement in 28 Cases , 1998 .

[12]  Derek L. G. Hill,et al.  Measurement of Intraoperative Brain Surface Deformation Under a Craniotomy , 1998, MICCAI.

[13]  M. Samii,et al.  Meningiomas of the tentorial notch: surgical anatomy and management. , 1996, Journal of neurosurgery.

[14]  L Lemieux,et al.  Voxel-based localization in frame-based and frameless stereotaxy and its accuracy. , 1994, Medical physics.

[15]  P J Kelly,et al.  A histologic and cytologic method for the spatial definition of gliomas. , 1987, Mayo Clinic proceedings.

[16]  H M Kooy,et al.  Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. , 1995, Journal of the National Cancer Institute.

[17]  J. Pruim,et al.  Contribution of magnetic resonance spectroscopic imaging and L-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. , 1994, Neurosurgery.

[18]  J Hildebrand,et al.  Positron emission tomography-guided stereotactic brain biopsy. , 1992, Neurosurgery.

[19]  Z. Ram,et al.  Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells , 1997, Nature Medicine.

[20]  R. Kikinis,et al.  Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. , 1997, Neurosurgery.

[21]  M. Mehta,et al.  The Status of Stereotactic Radiosurgery for Cerebral Metastases in 1998 , 1998 .

[22]  M. Samii,et al.  Surgical results for meningiomas of the craniocervical junction. , 1996, Neurosurgery.

[23]  P. Kelly,et al.  Volumetric stereotactic surgical resection of intra-axial brain mass lesions. , 1988, Mayo Clinic proceedings.

[24]  O Pastyr,et al.  Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. , 1997, Neurosurgery.

[25]  R. Maciunas,et al.  The application accuracy of stereotactic frames. , 1994, Neurosurgery.

[26]  D. Kondziolka,et al.  Radiosurgery instead of resection for solitary brain metastasis: the gold standard redefined. , 1996, International journal of radiation oncology, biology, physics.

[27]  T Greitz,et al.  Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. , 1983, Journal of computer assisted tomography.

[28]  P. Kelly,et al.  Computer-assisted stereotactic microsurgery for the treatment of intracranial neoplasms. , 1982, Neurosurgery.

[29]  K.,et al.  Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. , 1997, Journal of neurosurgery.

[30]  L. Lemieux,et al.  Accuracy in frame-based and frameless stereotaxy. , 1993, Stereotactic and functional neurosurgery.

[31]  M. Mehta,et al.  A cost-effectiveness and cost-utility analysis of radiosurgery vs. resection for single-brain metastases. , 1997, International journal of radiation oncology, biology, physics.

[32]  P F Morrison,et al.  Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. , 1995, Journal of neurosurgery.