Enhanced reductive dechlorination of trichloroethene in an acidic DNAPL impacted aquifer.

[1]  C. H. Ward,et al.  IN SITU Bioremediation Of Chlorinated Ethene Source Zones , 2014 .

[2]  R. Borden,et al.  Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2. , 2014, Environmental science & technology.

[3]  M. Harkness,et al.  Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns. , 2013, Journal of contaminant hydrology.

[4]  Ki Young Cha,et al.  Spreadsheet‐Based Design Tool for In Situ Anaerobic Bioremediation Using Soluble Substrate , 2013 .

[5]  Yi Yang Exploring anaerobic reductive dechlorination at low pH environments , 2012 .

[6]  Suthan Suthersan,et al.  Insights From Years of Performance That Are Shaping Injection-Based Remediation Systems , 2011 .

[7]  L. Semprini,et al.  Trichloroethene and cis‐1,2‐dichloroethene concentration‐dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. batch‐fed reactors , 2010, Biotechnology and bioengineering.

[8]  J. Gossett,et al.  Bioaugmentation for Anaerobic Bioremediation of Chlorinated Solvents , 2010 .

[9]  C. Condee,et al.  Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater , 2009, Journal of Industrial Microbiology & Biotechnology.

[10]  B. Parker,et al.  Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. , 2008, Journal of contaminant hydrology.

[11]  F. Löffler,et al.  Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. , 2008, Water research.

[12]  Aaron M. Weispfenning,et al.  A design tool for planning emulsified oil-injection systems , 2008 .

[13]  Peter Dietrich,et al.  A Rapid Method for Hydraulic Profiling in Unconsolidated Formations , 2008, Ground water.

[14]  Ashley Eaddy Scale-up and Characterization of an Enrichment Culture for Bioaugmentation of the P-Area Chlorinated Ethene Plume at the Savannah River Site , 2008 .

[15]  P. Kitanidis,et al.  Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater , 2007 .

[16]  R. Borden Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. , 2007, Journal of contaminant hydrology.

[17]  R. Borden Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. , 2007, Journal of contaminant hydrology.

[18]  F. Löffler,et al.  Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. , 2007, Environmental science & technology.

[19]  R. Borden Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil , 2006 .

[20]  E. Edwards,et al.  Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. , 2006, Environmental science & technology.

[21]  Charles J. Newell,et al.  Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent‐Impacted Sites , 2006 .

[22]  Beth L. Parker,et al.  Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation , 2005 .

[23]  Seungho Yu,et al.  Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. , 2004, Biotechnology and bioengineering.

[24]  S. Suthersan,et al.  Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons , 2002 .

[25]  E. Edwards,et al.  Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. , 2002, Water research.

[26]  Yanru Yang,et al.  Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. , 2002, Environmental science & technology.

[27]  James J. Butler,et al.  A dual-tube direct-push method for vertical profiling of hydraulic conductivity in unconsolidated formations , 2002 .

[28]  J. Hughes,et al.  Biologically-enhanced removal of PCE from NAPL source zones. , 2001, Environmental science & technology.

[29]  S. Zinder,et al.  Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". , 2001, Environmental science & technology.

[30]  P. Mccarty,et al.  Biologically enhanced dissolution of tetrachloroethene DNAPL , 2000 .

[31]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[32]  M. Brennan,et al.  Use of Bioaugmentation To Stimulate Complete Reductive Dechlorination of Trichloroethene in Dover Soil Columns , 1999 .

[33]  James M. Gossett,et al.  Modeling the Production of and Competition for Hydrogen in a Dechlorinating Culture , 1998 .

[34]  J. Gossett,et al.  Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. , 1997, Science.

[35]  D. Fennell,et al.  Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene , 1997 .

[36]  Ping Zhuang,et al.  Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes , 1995 .

[37]  J. Tiedje,et al.  Microbial reductive dehalogenation , 1992 .