Biclustering via Sparse Singular Value Decomposition

Summary Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row–column associations within high‐dimensional data matrices. SSVD seeks a low‐rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left‐ and right‐singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity‐inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets.

[1]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[6]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[7]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[8]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[9]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[10]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  R. Tibshirani,et al.  On the “degrees of freedom” of the lasso , 2007, 0712.0881.

[12]  Panos M. Pardalos,et al.  Feature Selection for Consistent Biclustering via Fractional 0–1 Programming , 2005, J. Comb. Optim..

[13]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[14]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[15]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[16]  Russell Greiner,et al.  Using Rank-One Biclusters to Classify Microarray Data , 2007 .

[17]  Chih-Ling Tsai,et al.  Regression coefficient and autoregressive order shrinkage and selection via the lasso , 2007 .

[18]  Hong Yan,et al.  Biclustering of Microarray Data Based on Singular Value Decomposition , 2007, PAKDD Workshops.

[19]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[20]  Ji Zhu,et al.  Variable Selection for Model‐Based High‐Dimensional Clustering and Its Application to Microarray Data , 2008, Biometrics.

[21]  Panos M. Pardalos,et al.  Biclustering in data mining , 2008, Comput. Oper. Res..

[22]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[23]  A. Nobel,et al.  Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data , 2008 .

[24]  H. Bondell,et al.  Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR , 2008, Biometrics.

[25]  Hansheng Wang,et al.  On General Adaptive Sparse Principal Component Analysis , 2008 .

[26]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[27]  A. Nobel,et al.  Finding large average submatrices in high dimensional data , 2009, 0905.1682.