Polytomous Latent Scales for the Investigation of the Ordering of Items
暂无分享,去创建一个
Klaas Sijtsma | Wicher Bergsma | L. Andries van der Ark | Rudy Ligtvoet | K. Sijtsma | Wicher Bergsma | L. V. D. Ark | R. Ligtvoet | L. Andries van der Ark | Wicher P Bergsma
[1] I. Deary,et al. A hierarchy of distress: Mokken scaling of the GHQ-30 , 2008, Psychological Medicine.
[2] Ivo W. Molenaar,et al. Nonparametric Models for Polytomous Responses , 1997 .
[3] G. Tutz. Sequential item response models with an ordered response , 1990 .
[4] Stephen E. Fienberg,et al. Positive dependence concepts for ordinal contingency tables , 1990 .
[5] Cees A. W. Glas,et al. Testing the Rasch Model , 1995 .
[6] Klaas Sijtsma,et al. Mokken scale analysis as time goes by: An update for scaling practitioners , 2011 .
[7] Brian W. Junker,et al. Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .
[8] van der Ark,et al. Mokken Scale Analysis in R , 2007 .
[9] Ivo W. Molenaar. About handy, handmade and handsome models , 2004 .
[10] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[11] Hua-Hua Chang,et al. The unique correspondence of the item response function and item category response functions in polytomously scored item response models , 1994 .
[12] I. W. Molenaar,et al. Rasch models: foundations, recent developments and applications , 1995 .
[13] Moshe Shaked,et al. Stochastic orders and their applications , 1994 .
[14] Brenda R. J. Jansen,et al. Statistical Test of the Rule Assessment Methodology by Latent Class Analysis , 1997 .
[15] R. Hambleton,et al. Handbook of Modern Item Response Theory , 1997 .
[16] Klaas Sijtsma,et al. On the consistency of individual classification using short scales. , 2007, Psychological methods.
[17] Hartmann Scheiblechner. Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP) , 2003 .
[18] Robert J. Mokken,et al. A Theory and Procedure of Scale Analysis. , 1973 .
[19] E. Muraki. A Generalized Partial Credit Model , 1997 .
[20] D. Andrich. A rating formulation for ordered response categories , 1978 .
[21] Hartmann Scheiblechner,et al. Isotonic ordinal probabilistic models (ISOP) , 1995 .
[22] R. J. Mokken,et al. Handbook of modern item response theory , 1997 .
[23] Klaas Sijtsma,et al. Introduction to Nonparametric Item Response Theory , 2002 .
[24] Frank Proschan,et al. Functions Decreasing in Transposition and Their Applications in Ranking Problems , 1977 .
[25] G. Masters. A rasch model for partial credit scoring , 1982 .
[26] P. Rosenbaum. Comparing item characteristic curves , 1987 .
[27] Eiji Muraki,et al. Fitting a Polytomous Item Response Model to Likert-Type Data , 1990 .
[28] L. A. van der Ark,et al. Hierarchically Related Nonparametric IRT Models, and Practical Data Analysis Methods , 2001 .
[29] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[30] Allan R. Sampson,et al. Topics in statistical dependence , 1990 .
[31] Rudy Ligtvoet,et al. Investigating an Invariant Item Ordering for Polytomously Scored Items , 2010 .
[32] Klaas Sijtsma,et al. Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .
[33] George A. Marcoulides,et al. Latent variable and latent structure models , 2002 .
[34] G. van Engelenburg. On psychometric models for polytomous items with ordered categories within the framework of item response theory , 1997 .
[35] It's an ill wind that brings no good. Studies on odour annoyance and the dispersion of odorant concentrations from industries. , 1992 .
[36] Klaas Sijtsma,et al. On measurement properties of continuation ratio models , 2001 .
[37] Paul R. Rosenbaum,et al. Probability inequalities for latent scales , 1987 .
[38] F. Samejima. Graded Response Model , 1997 .
[39] D. Wechsler. Wechsler Intelligence Scale for Children , 2020, Definitions.
[40] W. H. Schuur,et al. Mokken Scale Analysis: Between the Guttman Scale and Parametric Item Response Theory , 2003, Political Analysis.
[41] E. Muraki. A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .
[42] Klaas Sijtsma,et al. Mokken Scale Analysis for Dichotomous Items Using Marginal Models , 2007, Psychometrika.
[43] Gideon J. Mellenbergh,et al. Conceptual Notes on Models for Discrete Polytomous Item Responses , 1995 .
[44] Georg Rasch,et al. Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.
[45] K Sijtsma,et al. A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.
[46] Q. Mcnemar. Note on the sampling error of the difference between correlated proportions or percentages , 1947, Psychometrika.