Attractive and repulsive Casimir vacuum energy with general boundary conditions

[1]  A. P. Balachandran,et al.  Quantum Physics and Fluctuating Topologies: Survey , 2012, 1211.6882.

[2]  F. Wilczek,et al.  Models of Topology Change , 2012, 1210.3545.

[3]  G. L. Klimchitskaya,et al.  Constraints on non-Newtonian gravity and light elementary particles from measurements of the Casimir force by means of a dynamic atomic force microscope , 2012, 1209.0086.

[4]  M. Asorey,et al.  BOUNDARY EFFECTS IN QUANTUM PHYSICS , 2012, 1307.3762.

[5]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[6]  Steven G. Johnson,et al.  Casimir repulsion between metallic objects in vacuum. , 2010, Physical review letters.

[7]  Umar Mohideen,et al.  Advances in the Casimir Effect , 2009 .

[8]  G. L. Klimchitskaya,et al.  The Casimir force between real materials: Experiment and theory , 2009, 0902.4022.

[9]  F. Capasso,et al.  Measured long-range repulsive Casimir–Lifshitz forces , 2009, Nature.

[10]  M. Asorey,et al.  Vacuum boundary effects , 2008, 0803.2553.

[11]  M. Asorey,et al.  Vacuum structure and boundary renormalization group , 2007, 0712.4392.

[12]  K. Milton,et al.  Multiple scattering methods in Casimir calculations , 2007, 0712.3811.

[13]  R. Jaffe,et al.  Casimir forces between arbitrary compact objects , 2007, 0710.5104.

[14]  M. Kardar,et al.  Casimir Forces between Compact Objects: I. The Scalar Case , 2007, 0710.3084.

[15]  G. L. Klimchitskaya,et al.  Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect , 2007, 0706.3283.

[16]  D. García-Álvarez,et al.  Vacuum energy and renormalization on the edge , 2007, 0704.1084.

[17]  C. Farina The Casimir effect: some aspects , 2006, hep-th/0612232.

[18]  C. Hoyle,et al.  Tests of the gravitational inverse-square law below the dark-energy length scale. , 2006, Physical review letters.

[19]  R. Onofrio Casimir forces and non-Newtonian gravitation , 2006, hep-ph/0612234.

[20]  O. Kenneth,et al.  Opposites attract: a theorem about the Casimir Force. , 2006, Physical review letters.

[21]  S. Reynaud,et al.  The Casimir effect within scattering theory , 2006, quant-ph/0611103.

[22]  D. García-Álvarez,et al.  Casimir effect and global theory of boundary conditions , 2006, hep-th/0604089.

[23]  M. Bordag Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem , 2006, hep-th/0602295.

[24]  A. Scardicchio,et al.  Casimir effects: an optical approach I. Foundations and examples , 2004, quant-ph/0406041.

[25]  G. Marmo,et al.  GLOBAL THEORY OF QUANTUM BOUNDARY CONDITIONS AND TOPOLOGY CHANGE , 2004, hep-th/0403048.

[26]  H. Weigel,et al.  The Dirichlet Casimir problem , 2003, hep-th/0309130.

[27]  A. Nelson,et al.  TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.

[28]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[29]  H. Weigel,et al.  Calculating vacuum energies in renormalizable quantum field theories:: A new approach to the Casimir problem , 2002, hep-th/0207120.

[30]  U. Mohideen,et al.  New developments in the Casimir effect , 2001, quant-ph/0106045.

[31]  C. Hoyle,et al.  Submillimeter test of the gravitational inverse-square law: a search for "large" extra dimensions. , 2000, Physical review letters.

[32]  A. Romeo,et al.  Casimir effect for scalar fields under Robin boundary conditions on plates , 2000, hep-th/0007242.

[33]  K. Kirsten,et al.  Spectral functions in mathematics and physics , 2000, hep-th/0007251.

[34]  K. Milton The Casimir Effect: Physical Manifestations of Zero-Point Energy , 1999, hep-th/9901011.

[35]  V. Mostepanenko,et al.  The Casimir Effect and Its Applications , 1997 .

[36]  E Bergshoeff,et al.  Ten Physical Applications of Spectral Zeta Functions , 1996 .

[37]  R. Geroch Partial Differential Equations of Physics , 1996, gr-qc/9602055.

[38]  E. Elizalde Ten Physical Applications of Spectral Zeta Functions , 1995 .

[39]  G. Mussardo,et al.  Boundary energy and boundary states in integrable quantum field theories , 1995, hep-th/9503227.

[40]  A. P. Balachandran,et al.  Topology change and quantum physics , 1995, gr-qc/9503046.

[41]  Peter W. Milonni,et al.  The Quantum Vacuum: An Introduction to Quantum Electrodynamics , 1993 .

[42]  M. Asorey Topological phases of quantum theories. Chern-Simons theory , 1993 .

[43]  Ivan G. Avramidi,et al.  The Covariant Technique for Calculation of One Loop Effective Action , 1991 .

[44]  Elizalde,et al.  Rigorous extension of the proof of zeta-function regularization. , 1989, Physical review. D, Particles and fields.

[45]  A. Wipf,et al.  Zeta Functions and the Casimir Energy , 1988, 0906.2817.

[46]  Stephen Wolfram,et al.  Properties of the vacuum. I. mechanical and thermodynamic , 1983 .

[47]  K. Symanzik SCHRODINGER REPRESENTATION AND CASIMIR EFFECT IN RENORMALIZABLE QUANTUM FIELD THEORY , 1981 .

[48]  N. Kampen,et al.  ON THE MACROSCOPIC THEORY OF VAN DER WAALS FORCES , 1968 .

[49]  G. Watson The Diffraction of Electric Waves by the Earth , 1918 .

[50]  Phillip J. Cozzi Intern , 2007, Journal of General Internal Medicine.

[51]  I. Avramidi Erratum to “a covariant technique for the calculation of the one-loop effective action” [Nucl. Phys. B 355 (1991) 712] , 1998 .

[52]  V. Mostepanenko,et al.  Vacuum quantum effects in strong fields , 1994 .