Achievements and limitations in optimized GaAs films grown on Si by molecular‐beam epitaxy

A systematic study of the growth of high‐quality films of GaAs on Si substrates has been performed for applications in devices, particularly in optoelectronic devices for cointegration in optical interconnects. The effort for optimized active layers was approached through the separate optimization of substrate preparation, growth time parameters, and postgrowth treatment. In particular, the study of growth involved the investigation of the effect of silicon substrate orientation, post‐growth treatment, as well as multilayer and, especially, silicon buffer layers. For quantification of film quality, a number of characterization methods were used both in situ: reflected high‐energy electron diffraction (RHEED); and ex situ: optical, electrical [current versus voltage (I‐V), capacitance versus voltage (C‐V), deep‐level transient spectroscopy (DLTS), Hall], transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron channeling patterns, x‐ray double‐crystal diffractometry (DDX). Schot...

[1]  M. Akiyama,et al.  Growth of GaAs on Si by MOVCD , 1984 .

[2]  A. Ruiz,et al.  Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: Growth modes and applications , 1989 .

[3]  H. Kroemer MBE Growth of GaAs on Si: Problems and Progress , 1986 .

[4]  A. Christou,et al.  Optimization of GaAs-on-Silicon MESFET structures , 1991 .

[5]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[6]  Y. Takano,et al.  Realization of low facet density and the growth mechanism of GaAs on GaAs(110) by migration‐enhanced epitaxy , 1991 .

[7]  J. Harris,et al.  Effect of substrate surface structure on nucleation of GaAs on Si(100) , 1987 .

[8]  S. Asher,et al.  Origin of Defects in MOCVD Growth of GaP on Silicon , 1987 .

[9]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[10]  S. Pearton,et al.  Thickness dependence of material quality in GaAs‐on‐Si grown by metalorganic chemical vapor deposition , 1988 .

[11]  S. Pearton,et al.  Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon‐on‐insulator , 1988 .

[12]  H. Kawanami,et al.  Residual Stress in GaAs Layer Grown on 4°-Off (100)Si by MBE , 1987 .

[13]  H. Mori,et al.  Dislocation generation of GaAs on Si in the cooling stage , 1990 .

[14]  N. El-Masry,et al.  Interactions of dislocations in GaAs grown on Si substrates with InGaAs-GaAsP strained layered superlattices , 1988 .

[15]  D. Lang,et al.  GaAs‐on‐Si: Improved growth conditions, properties of undoped GaAs, high mobility, and fabrication of high‐performance AlGaAs/GaAs selectively doped heterostructure transistors and ring oscillators , 1990 .

[16]  Miles V. Klein,et al.  Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates , 1987 .

[17]  K. Tsagaraki,et al.  TEM observations of heteroepitaxial layers on (100)Si using a GaAs lift-off technique , 1991 .

[18]  Yoshiji Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[19]  Characteristics of p‐GaAs/n‐Si heterojunctions grown by molecular‐beam epitaxy , 1987 .

[20]  D. B. Holt Antiphase boundaries in semiconducting compounds , 1969 .

[21]  Alexandros Georgakilas,et al.  Photodetectors fabricated on heteroepitaxial GaAs/Si structures grown by molecular beam epitaxy , 1990 .

[22]  N. Matsuo,et al.  Si-Beam Radiation Cleaning in Molecular-Beam Epitaxy , 1985 .

[23]  Fernando Ponce,et al.  The effect of a Ga prelayer on the beginning of GaAs epitaxy on Si , 1988 .

[24]  P. Komninou,et al.  Defect microstructure in laser‐assisted modulation molecular‐beam epitaxy GaAs on (100) silicon , 1990 .

[25]  A. Christou,et al.  Trap distribution in gold-refractory/GaAs Schottky barriers , 1985 .

[26]  K. Wecht,et al.  Significant improvement in crystalline quality of molecular beam epitaxially grown GaAs on Si (100) by rapid thermal annealing , 1986 .

[27]  F. Ernst,et al.  Heteroepitaxy on (001) Silicon: Growth Mechanisms and Defect Formation. , 1988 .

[28]  S. Chu,et al.  Elimination of dark line defects in GaAs‐on‐Si by post‐growth patterning and thermal annealing , 1991 .

[29]  H. Morkoç,et al.  Growth of gallium arsenide on hydrogen passivated Si with low‐temperature treatment (∼600 °C) , 1991 .

[30]  A. Dimoulas,et al.  Photoreflectance measurement of strain in epitaxial GaAs on silicon , 1990 .

[31]  M. Kawabe,et al.  Initial Stage and Domain Structure of GaAs Grown on Si(100) by Molecular Beam Epitaxy , 1987 .

[32]  D. Morgan,et al.  Laser-annealed refractory metal silicide films on GaAs , 1990 .

[33]  P. Pukite,et al.  Multilayer step formation after As adsorption on Si (100): Nucleation of GaAs on vicinal Si , 1987 .

[34]  Mitsuo Kawabe,et al.  Self-Annihilation of Antiphase Boundary in GaAs on Si(100) Grown by Molecular Beam Epitaxy , 1987 .

[35]  A. Mazuelas,et al.  Determination of in-depth thermal strain distribution in Molecular Beam Epitaxy GaAs on Si , 1991 .

[36]  R. Matyi,et al.  Generation of misfit dislocations in GaAs grown on Si , 1989 .

[37]  A. Leycuras,et al.  Defect‐related Si diffusion in GaAs on Si , 1988 .

[38]  Y. Bando,et al.  Initial Growth and Dislocation Accommodation of GaAs on Si(100) by Molecular Beam Epilaxy , 1987 .

[39]  Initial stages of epitaxial growth of GaAs on (100) silicon , 1987 .

[40]  A. Madhukar,et al.  Defect reduction in strained InxGa1−xAs via growth on GaAs (100) substrates patterned to submicron dimensions , 1990 .