Microstructure evolution and shearing behavior of δꞌ/θꞌ/δꞌ precipitates in an aged Al-Cu-Li-Mg aluminium alloy

[1]  Wensheng Liu,et al.  A critical review: Crystal Structure, Evolution and Interaction Mechanism with Dislocations of Nano Precipitates in Al-Li Alloys , 2022, Materials & Design.

[2]  Cuilan Wu,et al.  The effect of thermo-mechanical treatment on the formation of T1 phase and δ′/θ′/δ′ composite precipitate in an Al-Cu-Li-Mg alloy , 2021 .

[3]  L. Allard,et al.  Aging behavior and strengthening mechanisms of coarsening resistant metastable θ' precipitates in an Al–Cu alloy , 2021 .

[4]  L. Allard,et al.  Crystallographic orientation-dependent strain hardening in a precipitation-strengthened Al-Cu alloy , 2020 .

[5]  J. Segurado,et al.  Multiscale modelling of precipitation hardening in Al–Cu alloys: Dislocation dynamics simulations and experimental validation , 2020, 2002.03128.

[6]  Alexander E. Mayer,et al.  Dislocation dynamics in aluminum containing θ’ phase: Atomistic simulation and continuum modeling , 2019, International Journal of Plasticity.

[7]  J. Weiss,et al.  Plate-like precipitate effects on plasticity of Al-Cu alloys at micrometer to sub-micrometer scales , 2019, Materials & Design.

[8]  S. Agnew,et al.  The effect of precipitate-induced backstresses on plastic anisotropy: Demonstrated by modeling the behavior of aluminum alloy, 7085 , 2019, International journal of plasticity.

[9]  J. Yang,et al.  Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy , 2018, International Journal of Lightweight Materials and Manufacture.

[10]  J. Segurado,et al.  Discrete dislocation dynamics simulations of dislocation-θ′ precipitate interaction in Al-Cu alloys , 2018, Journal of the Mechanics and Physics of Solids.

[11]  Jianguo Lin,et al.  Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy , 2018 .

[12]  F. Carlo,et al.  Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study , 2018 .

[13]  G. Huang,et al.  Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy , 2017 .

[14]  L. Cha,et al.  Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys , 2017 .

[15]  A. Deschamps,et al.  The effect of minor solute additions on the precipitation path of an AlCuLi alloy , 2016 .

[16]  S. Duan,et al.  Complex Precipitation Sequences of Al-Cu-Li-(Mg) Alloys Characterized in Relation to Thermal Ageing Processes , 2016, Acta Metallurgica Sinica (English Letters).

[17]  T. Noh,et al.  Atomic structure and growth mechanism of T1 precipitate in Al-Cu-Li-Mg-Ag alloy , 2015 .

[18]  Jizi Liu,et al.  Formation mechanism of precipitate T1 in AlCuLi alloys , 2015 .

[19]  T. Dorin,et al.  Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy , 2014 .

[20]  A. Deschamps,et al.  Microstructural evolution during ageing of Al–Cu–Li–x alloys , 2014, 1510.02917.

[21]  T. Dorin,et al.  The influence of precipitation on plastic deformation of Al-Cu-Li alloys , 2013 .

[22]  I. M. Robertson,et al.  Three-dimensional visualization of dislocation-precipitate interactions in a Al–4Mg–0.3Sc alloy using weak-beam dark-field electron tomography , 2011 .

[23]  Christopher Hutchinson,et al.  The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation , 2009 .

[24]  B. Muddle,et al.  Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates , 2008 .

[25]  E. Abe,et al.  Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases , 2003 .

[26]  E. Abe,et al.  Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys , 2003 .

[27]  B. Majumdar,et al.  Microstress evolution during in situ loading of a superalloy containing high volume fraction of γ' phase , 2003 .

[28]  B. Muddle,et al.  On the form of the age-hardening response in high strength aluminium alloys , 2001 .

[29]  K. Hono,et al.  Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy , 2001 .

[30]  B. Li,et al.  Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al–Cu–Mg–Ag alloy , 1998 .

[31]  A. Vasudévan,et al.  A high-resolution transmission electron microscopy investigation of the δ'–θ' precipitate structure in an Al-2 wt% Li-1 wt% Cu alloy , 1988 .

[32]  A. Vasudévan,et al.  The aging characteristics of an AI-2 Pct Li-3 Pct Cu-0.12 Pct Zr alloy at 190 °C , 1988, Metallurgical and Materials Transactions A.

[33]  J. Nie Physical Metallurgy of Light Alloys , 2014 .

[34]  J. Nie,et al.  Microstructural design of high-strength aluminum alloys , 1998 .