An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems

With many applications in engineering and in scientific fields, quantifier elimination (QE) has been attracting more attention these days. Cylindrical algebraic decomposition (CAD) is used as a basis for a general QE algorithm. We propose an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm for solving polynomial optimization problems. The main ideas are a bounded CAD construction approach and utilization of sign information. The bounded CAD constructs CAD only in restricted admissible regions to remove redundant projection factors and avoid lifting cells where truth values are constant over the region. By utilization of sign information we can avoid symbolic computation in the lifting phase. Techniques for implementation are also presented. These techniques help reduce the computing time. We have examined our implementation by solving many example problems. Experimental results show that our implementation significantly improves efficiency compared to our previous work.

[1]  Christopher W. Brown Improved projection for CAD's of R3 , 2000, ISSAC.

[2]  Hirokazu Anai,et al.  A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination , 2009 .

[3]  H. Hong An improvement of the projection operator in cylindrical algebraic decomposition , 1990, ISSAC '90.

[4]  Hirokazu Anai,et al.  Solving and visualizing nonlinear parametric constraints in control based on quantifier elimination , 2007, Applicable Algebra in Engineering, Communication and Computing.

[5]  Fabrice Rouillier,et al.  Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities , 2008, ISSAC '08.

[6]  Volker Weispfenning,et al.  Simulation and Optimization by Quantifier Elimination , 1997, J. Symb. Comput..

[7]  Laureano González-Vega,et al.  Applying Quantifier Elimination to the Birkhoff Interpolation Problem , 1996, J. Symb. Comput..

[8]  Markus Schweighofer Global Optimization of Polynomials Using Gradient Tentacles and Sums of Squares , 2006, SIAM J. Optim..

[9]  Stefan Ratschan,et al.  Approximate Quantified Constraint Solving by Cylindrical Box Decomposition , 2002, Reliab. Comput..

[10]  Mohab Safey El Din,et al.  Computing the global optimum of a multivariate polynomial over the reals , 2008, ISSAC '08.

[11]  Scott McCallum On propagation of equational constraints in CAD-based quantifier elimination , 2001, ISSAC '01.

[12]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[13]  Dominique Duval,et al.  Algebraic Numbers: An Example of Dynamic Evaluation , 1994, J. Symb. Comput..

[14]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[15]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[16]  Pablo A. Parrilo,et al.  Convex Quantifier Elimination for Semidefinite Programming , 2003 .

[17]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[18]  T. Simpson,et al.  Efficient Pareto Frontier Exploration using Surrogate Approximations , 2000 .

[19]  Scott McCallum Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition , 1993, Comput. J..

[20]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.

[21]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[22]  L. González-Vega A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .

[23]  Bin Li,et al.  Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.

[24]  Hirokazu Anai,et al.  An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2009, SNC '09.

[25]  Thomas Sturm,et al.  Rounding and Blending of Solids by a Real Elimination Method , 1997 .

[26]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[27]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[28]  Thomas Sturm,et al.  Investigating Generic Methods to Solve Hopf Bifurcation Problems in Algebraic Biology , 2008, AB.

[29]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[30]  H. Yanami,et al.  Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[31]  Scott McCallum,et al.  On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.

[32]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[33]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[34]  S. Hara,et al.  Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[35]  Hoon Hong,et al.  Quantifier elimination for formulas constrained by quadratic equations , 1993, ISSAC '93.

[36]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[37]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[38]  Adam W. Strzebonski A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic , 1999, Reliab. Comput..

[39]  Hirokazu Anai,et al.  Cylindrical Algebraic Decomposition via Numerical Computation with Validated Symbolic Reconstruction , 2005, Algorithmic Algebra and Logic.

[40]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[41]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[42]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[43]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[44]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[45]  Lihong Zhi,et al.  Global optimization of polynomials using generalized critical values and sums of squares , 2010, ISSAC.

[46]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.