Iterative approach to model identification of biological networks

BackgroundRecent advances in molecular biology techniques provide an opportunity for developing detailed mathematical models of biological processes. An iterative scheme is introduced for model identification using available system knowledge and experimental measurements.ResultsThe scheme includes a state regulator algorithm that provides estimates of all system unknowns (concentrations of the system components and the reaction rates of their inter-conversion). The full system information is used for estimation of the model parameters. An optimal experiment design using the parameter identifiability and D-optimality criteria is formulated to provide "rich" experimental data for maximizing the accuracy of the parameter estimates in subsequent iterations. The importance of model identifiability tests for optimal measurement selection is also considered. The iterative scheme is tested on a model for the caspase function in apoptosis where it is demonstrated that model accuracy improves with each iteration. Optimal experiment design was determined to be critical for model identification.ConclusionThe proposed algorithm has general application to modeling a wide range of cellular processes, which include gene regulation networks, signal transduction and metabolic networks.

[1]  J A Jacquez,et al.  Parameter estimation: local identifiability of parameters. , 1990, The American journal of physiology.

[2]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[3]  J Glassey,et al.  Bioprocess supervision: neural networks and knowledge based systems. , 1997, Journal of biotechnology.

[4]  P A Vanrolleghem,et al.  Practical identifiability of model parameters by combined respirometric-titrimetric measurements. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[5]  F J Doyle,et al.  Model identification of signal transduction networks from data using a state regulator problem. , 2005, Systems biology.

[6]  Kwang-Hyun Cho,et al.  Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..

[7]  F. Doyle,et al.  Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. , 2003, Genome research.

[8]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[9]  W. Brogan Modern Control Theory , 1971 .

[10]  W. Ramirez,et al.  On‐Line State Estimation and Parameter Identification for Batch Fermentation , 1996 .

[11]  Andreas Wagner,et al.  How to reconstruct a large genetic network from n gene perturbations in fewer than n2 easy steps , 2001, Bioinform..

[12]  L. Ljung,et al.  The role of model validation for assessing the size of the unmodeled dynamics , 1997, IEEE Trans. Autom. Control..

[13]  Katherine C. Chen,et al.  Kinetic analysis of a molecular model of the budding yeast cell cycle. , 2000, Molecular biology of the cell.

[14]  Rimvydas Simutis,et al.  Exploratory Analysis of Bioprocesses Using Artificial Neural Network‐Based Methods , 1997 .

[15]  Steven P. Asprey,et al.  On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations , 2003 .

[16]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[17]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[18]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[19]  C. Storey,et al.  Application of Stochastic Global Optimization Algorithms to Practical Problems , 1997 .

[20]  Sandro Macchietto,et al.  Statistical tools for optimal dynamic model building , 2000 .

[21]  Eric Walter,et al.  QUALITATIVE AND QUANTITATIVE IDENTIFIABILITY ANALYSIS OF NONLINEAR CHEMICAL KINETIC MODELS , 1989 .

[22]  Aimo A. Törn,et al.  Stochastic Global Optimization: Problem Classes and Solution Techniques , 1999, J. Glob. Optim..

[23]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[26]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[27]  M. N. Karim,et al.  Comparison of feed-forward and recurrent neural networks for bioprocess state estimation , 1992 .

[28]  R. Braatz,et al.  Maximum A posteriori estimation of transient enhanced diffusion energetics , 2003 .

[29]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[30]  A. Emery,et al.  Optimal experiment design , 1998 .

[31]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[32]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[33]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[34]  M. Fussenegger,et al.  A mathematical model of caspase function in apoptosis , 2000, Nature Biotechnology.

[35]  F. Doyle,et al.  A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. , 2004, Genome research.

[36]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[37]  Jan Van Impe,et al.  Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach , 2002 .

[38]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[39]  F. David,et al.  Parameter Estimation in Engineering and Science , 1977 .

[40]  Manel Poch,et al.  Biomass Estimation in Plant Cell Cultures Using an Extended Kalman Filter , 1993 .

[41]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[42]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[43]  Sui Huang,et al.  The next step in systems biology: simulating the temporospatial dynamics of molecular network. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[44]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[45]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[46]  Herschel Rabitz,et al.  Optimal identification of biochemical reaction networks. , 2004, Biophysical journal.

[47]  G Stephanopoulos,et al.  Studies on on‐line bioreactor identification. I. Theory , 1984, Biotechnology and bioengineering.