InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands

We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.

[1]  K. Lau,et al.  GaAs-InGaAs-GaAs Fin-Array Tunnel Diodes on (001) Si Substrates With Room-Temperature Peak-to-Valley Current Ratio of 5.4 , 2016, IEEE Electron Device Letters.

[2]  Niamh Waldron,et al.  Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001) , 2014 .

[3]  J. Bowers,et al.  1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates , 2017 .

[4]  Kei May Lau,et al.  Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.

[5]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[6]  Kei May Lau,et al.  1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si , 2017 .

[7]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[8]  C. Merckling,et al.  Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches , 2014 .

[9]  K. Barla,et al.  Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering , 2014 .

[10]  M. Li,et al.  Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate , 2016 .

[11]  Yu Han,et al.  Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates , 2016 .

[12]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[13]  E. Kapon,et al.  Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures , 2002 .

[14]  X. Bao,et al.  Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices , 2014 .

[15]  K. Lau,et al.  Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer , 2017 .

[16]  Bin Tian,et al.  Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. , 2017, Nano letters.

[17]  O. Richard,et al.  Site Selective Integration of III–V Materials on Si for Nanoscale Logic and Photonic Devices , 2012 .

[18]  C. Merckling,et al.  Polytypic InP nanolaser monolithically integrated on (001) silicon. , 2013, Nano letters.

[19]  Serge Oktyabrsky,et al.  Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping , 2016 .

[20]  M. Carroll,et al.  Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping , 2007 .

[21]  K. Lau,et al.  Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon , 2016 .

[22]  Bin Tian,et al.  III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate , 2016 .

[23]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[24]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[25]  Yu Han,et al.  Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths , 2017 .