High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries

[1]  Liumin Suo,et al.  Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities , 2019, Nature Energy.

[2]  B. Sundén Battery technologies , 2019, Hydrogen, Batteries and Fuel Cells.

[3]  Yi Cui,et al.  An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage , 2018, Nature Energy.

[4]  Yayuan Liu,et al.  Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage , 2017, Nature Communications.

[5]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[6]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[7]  Quan-hong Yang,et al.  The Li-Se battery and its C/Se composite electrode: Opportunities and challenges , 2017 .

[8]  P. Chu,et al.  Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries , 2017 .

[9]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[10]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[11]  Yitai Qian,et al.  Graphene–encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li–Se batteries , 2015 .

[12]  Guangmin Zhou,et al.  Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries. , 2015, Chemical communications.

[13]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[14]  Ya‐Xia Yin,et al.  Elemental Selenium for Electrochemical Energy Storage. , 2015, The journal of physical chemistry letters.

[15]  Micro‐ and Mesoporous Carbide‐Derived Carbon–Selenium Cathodes for High‐Performance Lithium Selenium Batteries , 2015 .

[16]  Kai Liu,et al.  Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium–hydrogen peroxide semi-fuel cell , 2014 .

[17]  Lixia Yuan,et al.  Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries , 2014 .

[18]  Chang-An Wang,et al.  Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible , 2014 .

[19]  K. Amine,et al.  Li-Se battery: absence of lithium polyselenides in carbonate based electrolyte. , 2014, Chemical communications.

[20]  Yu-Guo Guo,et al.  An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. , 2013, Angewandte Chemie.

[21]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[22]  Jun Lu,et al.  (De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. , 2013, Journal of the American Chemical Society.

[23]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[24]  李泓,et al.  锂电池基础科学问题(I)----化学储能电池理论能量密度的估算 , 2013 .

[25]  Khalil Amine,et al.  A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. , 2012, Journal of the American Chemical Society.

[26]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[27]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[28]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[29]  Z. Wen,et al.  Research on sodium sulfur battery for energy storage , 2008 .

[30]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[31]  J. L. Sudworth,et al.  The sodium/nickel chloride (ZEBRA) battery , 2001 .

[32]  K. Amine,et al.  Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF6 in Ethylene Carbonate-Ethyl Methyl Carbonate , 2001 .