Hyperspectral image classification using multi-feature fusion

Abstract Traditional hyperspectral image (HSI) classification methods typically use the spectral features and do not make full use of the spatial or other features of the HSI. To address this problem, this paper proposes a novel HSI classification method based on a multi-feature fusion strategy. The spectral-spatial features are first extracted by spectral-spatial feature learning (SSFL), which is a deep hierarchical architecture. Additionally, the texture features of the local binary pattern (LBP) image are applied and fused with the spectral-spatial features. Then, the kernel extreme learning machine (KELM) is used to classify the hyperspectral images. The results of a number of experiments show that the proposed method effectively improves the classification accuracy of hyperspectral images.

[1]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[2]  Liang Xiao,et al.  Supervised Spectral–Spatial Hyperspectral Image Classification With Weighted Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Bo Du,et al.  Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Ying-Nong Chen,et al.  Hyperspectral Image Classification Using Nearest Feature Line Embedding Approach , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Hamid R. Rabiee,et al.  Spatial-Aware Dictionary Learning for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Jon Atli Benediktsson,et al.  A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Chen Chen,et al.  Single-image super-resolution using multihypothesis prediction , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Chen Chen,et al.  Reconstruction of Hyperspectral Imagery From Random Projections Using Multihypothesis Prediction , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Huimin Lu,et al.  Low illumination underwater light field images reconstruction using deep convolutional neural networks , 2018, Future Gener. Comput. Syst..

[13]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Xudong Jiang,et al.  LBP-Based Edge-Texture Features for Object Recognition , 2014, IEEE Transactions on Image Processing.

[17]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Antonio J. Plaza,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Spectral–Spatial Classification of Hyperspectral Data Usi , 2022 .

[20]  Yuan Yan Tang,et al.  Quaternionic Local Ranking Binary Pattern: A Local Descriptor of Color Images , 2016, IEEE Transactions on Image Processing.

[21]  Xin Huang,et al.  A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy , 2009 .

[22]  Peijun Du,et al.  Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Huimin Lu,et al.  Motor Anomaly Detection for Unmanned Aerial Vehicles Using Reinforcement Learning , 2018, IEEE Internet of Things Journal.

[24]  Anne H. Schistad Solberg,et al.  Sparse Inverse Covariance Estimates for Hyperspectral Image Classification , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Xuelong Li,et al.  Spectral-Spatial Constraint Hyperspectral Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Yicong Zhou,et al.  Learning Hierarchical Spectral–Spatial Features for Hyperspectral Image Classification , 2016, IEEE Transactions on Cybernetics.

[27]  Jon Atli Benediktsson,et al.  Multiple Feature Learning for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[28]  A. Agarwal,et al.  Efficient Hierarchical-PCA Dimension Reduction for Hyperspectral Imagery , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[29]  Yuan Yan Tang,et al.  Person reidentification using quaternionic local binary pattern , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[30]  Bin Li,et al.  Wound intensity correction and segmentation with convolutional neural networks , 2017, Concurr. Comput. Pract. Exp..

[31]  Huimin Lu,et al.  Brain Intelligence: Go beyond Artificial Intelligence , 2017, Mobile Networks and Applications.

[32]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Yicong Zhou,et al.  Dimension Reduction Using Spatial and Spectral Regularized Local Discriminant Embedding for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[35]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Multispectral Images Using Kernel Feature Space Representation , 2014, IEEE Geoscience and Remote Sensing Letters.

[36]  Yicong Zhou,et al.  Quaternion-Michelson Descriptor for Color Image Classification , 2016, IEEE Transactions on Image Processing.

[37]  Qian Du,et al.  Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.