From crustal thickening to orogen-parallel escape: the 120 Ma-long HT-LP evolution of the Paleozoic Famatinian back-arc, NW Argentina

Exposed sections of accretionary orogens allow reconstruction of their tectonic evolution. Most commonly, orogens are characterised by two-dimensional shortening perpendicular to the orogenic front...

[1]  P. Závada,et al.  Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation , 2020 .

[2]  N. Hauser,et al.  New hints on the evolution of the Eastern Magmatic Belt, Puna Argentina. SW Gondwana margin: Zircon U-Pb ages and Hf isotopes in the Pachamama Igneous-Metamorphic Complex , 2019, Journal of South American Earth Sciences.

[3]  F. Jourdan,et al.  Prolonged Movement on a > 10‐km‐Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina , 2019, Tectonics.

[4]  R. Weinberg,et al.  Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana , 2018, Earth-Science Reviews.

[5]  M. Basei,et al.  A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.

[6]  R. Weinberg,et al.  How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina , 2017 .

[7]  N. Botelho,et al.  Low‐P melting of metapelitic rocks and the role of H2O: Insights from phase equilibria modelling , 2017 .

[8]  R. Weinberg,et al.  A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina , 2017 .

[9]  R. Weinberg,et al.  Tectono-metamorphic evolution of a convergent back-arc: The Famatinian orogen, Sierra de Quilmes, Sierras Pampeanas, NW Argentina , 2017 .

[10]  D. Harlov,et al.  Experimental constraints on the relative stabilities of the two systems monazite-(Ce) – allanite-(Ce) – fluorapatite and xenotime-(Y) – (Y,HREE)-rich epidote – (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750 °C , 2017, Mineralogy and Petrology.

[11]  Richard R. Taylor,et al.  Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes , 2016 .

[12]  R. Weinberg,et al.  Water loss and the origin of thick ultramylonites , 2016 .

[13]  A. Gerdes,et al.  The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina , 2016 .

[14]  R. Arenas,et al.  Thickening vs. extension in the Variscan belt: P–T modelling in the Central Iberian autochthon , 2016 .

[15]  O. Eisen,et al.  Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet , 2016, Nature Communications.

[16]  R. Pankhurst,et al.  Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications , 2016 .

[17]  C. J. Wilson,et al.  Fabric controls on strain accommodation in naturally deformed mylonites: The influence of interconnected micaceous layers , 2016 .

[18]  F. Corfu,et al.  Behaviour of geochronometers and timing of metamorphic reactions during deformation at lower crustal conditions: phase equilibrium modelling and U–Pb dating of zircon, monazite, rutile and titanite from the Kalak Nappe Complex, northern Norway , 2015 .

[19]  M. C. Moya La "Fase Oclóyica"(Ordovícico Superior) en el noroeste argentino. Interpretación histórica y evidencias en contrario , 2015 .

[20]  R. Weinberg,et al.  One kilometre-thick ultramylonite, Sierra de Quilmes, Sierras Pampeanas, NW Argentina , 2015 .

[21]  R. Law Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review , 2014 .

[22]  W. Franke Topography of the Variscan orogen in Europe: failed–not collapsed , 2014, International Journal of Earth Sciences.

[23]  P. Renne,et al.  Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina , 2014 .

[24]  C. Beaumont,et al.  On the origin of orogens , 2013 .

[25]  M. Pimentel,et al.  Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: A petrologic and geochemical study , 2013 .

[26]  J. Cosgrove,et al.  Strain partitioning in banded and/or anisotropic rocks: Implications for inferring tectonic regimes , 2013 .

[27]  L. Morgan,et al.  Precision and Accuracy in Geochronology , 2013 .

[28]  M. Kohn,et al.  Titanium in muscovite, biotite, and hornblende: Modeling, thermometry, and rutile activities of metapelites and amphibolites , 2012 .

[29]  J. Žák,et al.  Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian Massif , 2012, International Journal of Earth Sciences.

[30]  C. V. Staal,et al.  The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block , 2011 .

[31]  R. Heilbronner,et al.  Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep , 2011 .

[32]  R. Jamieson,et al.  Crustal Melting and the Flow of Mountains , 2011 .

[33]  M. Basei,et al.  High T/P evolution and metamorphic ages of the migmatitic basement of northern Sierras Pampeanas, Argentina: Characterization of a mid-crustal segment of the Famatinian belt , 2011 .

[34]  J. Peucat,et al.  Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux , 2011 .

[35]  S. Kamo,et al.  GRENVILLE SKARN TITANITE: POTENTIAL REFERENCE MATERIAL FOR SIMS U–Th–Pb ANALYSIS , 2010 .

[36]  W. A. Sullivan,et al.  Asymmetrical quartz crystallographic fabrics formed during constrictional deformation , 2010 .

[37]  D. Harlov,et al.  Letter. Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature , 2010 .

[38]  M. Peternell,et al.  Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques , 2010 .

[39]  C. Beaumont,et al.  Models of large, hot orogens containing a collage of reworked and accreted terranes , 2010 .

[40]  O. Vanderhaeghe Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts , 2009 .

[41]  D. Gapais,et al.  Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic , 2009 .

[42]  S. Büttner The Ordovician Sierras Pampeanas-Puna basin connection: Basement thinning and basin formation in the Proto-Andean back-arc , 2009 .

[43]  G. Lister,et al.  Tectonic mode switches and the nature of orogenesis , 2009 .

[44]  W. A. Sullivan Kinematic significance of L tectonites in the footwall of a major terrane-bounding thrust fault, Klamath Mountains, California, USA , 2009 .

[45]  C. Manning,et al.  Phase‐equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite–rutile equilibria , 2009 .

[46]  V. Ramos,et al.  Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle , 2009 .

[47]  J. Schwarz,et al.  Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C , 2008 .

[48]  V. Ramos The Basement of the Central Andes: The Arequipa and Related Terranes , 2008 .

[49]  E. Watson,et al.  A thermobarometer for sphene (titanite) , 2008 .

[50]  M. Jayananda,et al.  Three‐dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar craton, India) , 2008 .

[51]  J. Schwartz,et al.  Timing and Duration of the Calc‐Alkaline Arc of the Pampean Orogeny: Implications for the Late Neoproterozoic to Cambrian Evolution of Western Gondwana , 2008, The Journal of Geology.

[52]  K. Kunze,et al.  The analysis of quartz c‐axis fabrics using a modified optical microscope , 2007, Journal of microscopy.

[53]  C. Faccenna,et al.  Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones , 2007 .

[54]  W. A. Sullivan,et al.  Deformation path partitioning within the transpressional White Mountain shear zone, California and Nevada , 2007 .

[55]  R. Wintsch,et al.  Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England , 2007, American Journal of Science.

[56]  R. Heilbronner,et al.  Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite , 2006 .

[57]  R. Handler,et al.  Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina) , 2005 .

[58]  S. Lallemand,et al.  Plate motions, slab dynamics and back-arc deformation , 2005 .

[59]  Peter A. Cawood,et al.  Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic , 2005 .

[60]  M. Handy,et al.  Experimental deformation of partially melted granite revisited: implications for the continental crust , 2005 .

[61]  R. Hyndman,et al.  The thermal structure of subduction zone back arcs , 2004 .

[62]  F. Dávila,et al.  Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion , 2004 .

[63]  E. Watson,et al.  Pb diffusion in monazite: a combined RBS/SIMS study , 2004 .

[64]  F. Lucassen,et al.  Timing of high‐grade metamorphism: Early Palaeozoic U–Pb formation ages of titanite indicate long‐standing high‐T conditions at the western margin of Gondwana (Argentina, 26–29°S) , 2003 .

[65]  W. A. Thomas,et al.  Ordovician accretion of the Argentine Precordillera terrane to Gondwana: a review , 2003 .

[66]  J. Ferry,et al.  Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology , 2003 .

[67]  F. Dávila,et al.  Unraveling 470 m.y. of shortening in the Central Andes and documentation of Type 0 superposed folding , 2003 .

[68]  C. Rosenberg,et al.  Deformation and recrystallization of plagioclase along a temperature gradient: an example from the Bergell tonalite , 2003 .

[69]  R. Heilbronner,et al.  The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C , 2002 .

[70]  H. Miller,et al.  Proterozoic–Early Paleozoic evolution in western South America—a discussion , 2002 .

[71]  W. Collins Hot orogens, tectonic switching, and creation of continental crust , 2002 .

[72]  C. Teyssier,et al.  Partial melting and flow of orogens , 2001 .

[73]  A. Braathen,et al.  Devonian, orogen-parallel, opposed extension in the Central Norwegian Caledonides , 2000 .

[74]  A. Seilacher,et al.  Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes , 1999 .

[75]  J. Saavedra,et al.  Early evolution of the Proto-Andean margin of South America , 1998 .

[76]  F. Hervé,et al.  Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile , 1997 .

[77]  T. Pavlis,et al.  Fold-fault relationships in low-angle detachment systems , 1994 .

[78]  J. Fletcher,et al.  Constrictional strain in a non-coaxial shear zone: implications for fold and rock fabric development, central Mojave metamorphic core complex, California , 1994 .

[79]  J. Malavieille Late Orogenic extension in mountain belts: Insights from the basin and range and the Late Paleozoic Variscan Belt , 1993 .

[80]  S. Kay,et al.  Paleozoic terranes of the central Argentine‐Chilean Andes , 1986 .

[81]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[82]  K. Hamza,et al.  A 60-Myr record of continental back-arc differentiation through cyclic melting , 2019, Nature Geoscience.

[83]  B. Schoene 4.10 – U–Th–Pb Geochronology , 2014 .

[84]  H. Jeong,et al.  of Modern , 2013 .

[85]  W. Griffin,et al.  The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: Detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting , 2011 .

[86]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[87]  C. Simpson,et al.  Primary Structure Influence on Compositional Banding in Psammites: Examples from the Puncoviscana Formation, North-central Argentina , 2009 .

[88]  E. Sawyer Atlas of Migmatites , 2008 .

[89]  A. Cruden,et al.  Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models , 2006, Geological Society, London, Special Publications.

[90]  R. Hyndman,et al.  Subduction zone backarcs, mobile belts, and orogenic heat , 2005 .

[91]  L. Jolivet,et al.  Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea , 2004 .

[92]  V. Ramos,et al.  Proterozoic-early Paleozoic ophiolites of the Andean basement of southern South America , 2000 .

[93]  R. Astini Stratigraphical evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina , 1998, Geological Society, London, Special Publications.

[94]  J. Saavedra,et al.  The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba , 1998, Geological Society, London, Special Publications.

[95]  V. Ramos,et al.  Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina , 1998, Geological Society, London, Special Publications.

[96]  J. Tullis,et al.  Diffusion creep in feldspar aggregates: experimental evidence , 1991 .

[97]  C. Breitkreuz,et al.  Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile) , 1991 .

[98]  L. Skjernaa Tubular folds and sheath folds: definitions and conceptual models for their development, with examples from the Grapesvare area, northern Sweden , 1989 .

[99]  B. Hobbs,et al.  The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history , 1980 .