Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] Harry Furstenberg,et al. A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS* , 1963 .
[3] H. Karcher,et al. How to conjugateC1-close group actions , 1973 .
[4] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[5] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[6] C. Atkinson. Rao's distance measure , 1981 .
[7] C. R. Rao,et al. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .
[8] L. Skovgaard. A Riemannian geometry of the multivariate normal model , 1984 .
[9] M. Gromov,et al. Manifolds of Nonpositive Curvature , 1985 .
[10] O. Barndorff-Nielsen. Parametric statistical models and likelihood , 1988 .
[11] Ann F. S. Mitchell,et al. The information matrix, skewness tensor and a-connections for the general multivariate elliptic distribution , 1989 .
[12] Josep M. Oller,et al. A distance between multivariate normal distributions based in an embedding into the Siegel group , 1990 .
[13] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[14] Josep M. Oller,et al. On an intrinsic bias measure , 1993 .