Phase-coherent transport in trigonal gallium nitride nanowires

Gallium nitride nanowires (GaN NWs) with triangular cross-section exhibit universal conductance fluctuations (UCF) originating from the quantum interference of electron wave functions in the NWs. The amplitude of UCF is inversely proportional to the applied bias current. The bias dependence of UCF, combined with temperature dependence of the resistance suggests that phase coherent transport dominates over normal transport in GaN NWs. A unique temperature dependence of phase-coherent length and fluctuation amplitude is associated with inelastic electron–electron scattering in NWs. The phase-coherence length extracted from the UCF is as large as 400 nm at 1.8 K, and gradually decreases as temperature increases up to 60 K.

[1]  Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires , 2017, Nature communications.

[2]  P. Paskov,et al.  Electron band bending of polar, semipolar and non-polar GaN surfaces , 2016 .

[3]  Kenji Watanabe,et al.  Conductance Quantization at Zero Magnetic Field in InSb Nanowires. , 2016, Nano letters.

[4]  M. Eickhoff,et al.  Doping-Induced Universal Conductance Fluctuations in GaN Nanowires. , 2015, Nano letters.

[5]  Kang L. Wang,et al.  Electrical spin injection and transport in semiconductor nanowires: challenges, progress and perspectives. , 2015, Nanoscale.

[6]  E. Bakkers,et al.  Quantum computing based on semiconductor nanowires , 2013 .

[7]  A. Kandala,et al.  Surface-sensitive two-dimensional magneto-fingerprint in mesoscopic Bi2Se3 channels. , 2013, Nano letters.

[8]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[9]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[10]  D. Weiss,et al.  Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays , 2012, 1208.2564.

[11]  Rong Zhang,et al.  Two-dimensional universal conductance fluctuations and the electron-phonon interaction of surface states in Bi2Te2Se microflakes , 2012, Scientific Reports.

[12]  D. Liang,et al.  Strong tuning of Rashba spin-orbit interaction in single InAs nanowires. , 2012, Nano letters.

[13]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[14]  L. Y. Wang,et al.  Universal conductance fluctuations in indium tin oxide nanowires , 2012, 1202.1329.

[15]  Ilsoo Kim,et al.  Exchange-induced electron transport in heavily phosphorus-doped si nanowires. , 2011, Nano letters.

[16]  T. Schäpers,et al.  Electronic phase coherence in InAs nanowires. , 2011, Nano letters.

[17]  장준연,et al.  Exchange-Induced Electron Transport in Heavily Phosphorus-Doped Si Nanowires , 2011 .

[18]  T. Schäpers,et al.  Universal conductance fluctuations and localization effects in InN nanowires connected in parallel , 2010 .

[19]  M. Pala,et al.  Spin-orbit coupling and phase coherence in InAs nanowires , 2010, 1011.1556.

[20]  Charles M. Lieber,et al.  Semiconductor nanowires: A platform for nanoscience and nanotechnology , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[21]  Ming Liu,et al.  Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. , 2009, Physical review letters.

[22]  D. Liang,et al.  One-dimensional weak localization of electrons in a single InAs nanowire. , 2009, Nano letters.

[23]  T. Schäpers,et al.  Flux quantization effects in InN nanowires. , 2008, Nano letters.

[24]  Temperature dependence of the phase-coherence length in InN nanowires , 2008, 0802.4175.

[25]  H. Luth,et al.  Phase-coherent transport in InN nanowires of various sizes , 2008, 0802.4014.

[26]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[27]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[28]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[29]  W. Wegscheider,et al.  Dephasing in (Ga,Mn)As nanowires and rings. , 2006, Physical review letters.

[30]  Lars Samuelson,et al.  Tunable double quantum dots in InAs nanowires defined by local gate electrodes. , 2005, Nano letters.

[31]  A. Mills,et al.  Strongly enhanced hole-phonon coupling in the metallic state of the dilute two-dimensional hole gas. , 2005, Physical review letters.

[32]  A. Morpurgo,et al.  Sample-specific and ensemble-averaged magnetoconductance of individual single-wall carbon nanotubes. , 2004, Physical review letters.

[33]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[34]  Siddharth Rajana,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in Nand Ga-face AlGaN / GaN heterostructures , 2004 .

[35]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[36]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[37]  van Houten H,et al.  Flux-cancellation effect on narrow-channel magnetoresistance fluctuations. , 1988, Physical review. B, Condensed matter.

[38]  Lee,et al.  Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. , 1987, Physical review. B, Condensed matter.

[39]  Lee,et al.  Universal conductance fluctuations in metals. , 1985, Physical review letters.

[40]  H. Fukuyama,et al.  Inelastic scattering time in two-dimensional disordered metals , 1983 .

[41]  N. Mott,et al.  Metal-insulator transition in doped semiconductors , 1980 .