A tight upper bound on the number of candidate patterns

In the context of mining for frequent patterns using the standard level-wise algorithm, the following question arises: given the current level and the current set of frequent patterns, what is the maximal number of candidate patterns that can be generated on the next level? We answer this question by providing a tight upper bound, derived from a combinatorial result by J. Kruskal (1963) and G. Katona (1968). Our result is useful for reducing the number of database scans.

[1]  Zvi M. Kedem,et al.  Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Set , 1998, EDBT.

[2]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[3]  HanJiawei,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998 .

[4]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[5]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[6]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[7]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[8]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[9]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[10]  Laks V. S. Lakshmanan,et al.  Optimization of constrained frequent set queries with 2-variable constraints , 1999, SIGMOD '99.

[11]  Peter Frankl,et al.  A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..

[12]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[13]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[14]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[15]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[16]  Bart Goethals,et al.  On Supporting Interactive Association Rule Mining , 2000, DaWaK.

[17]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[18]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[19]  Ramesh C Agarwal,et al.  Depth first generation of long patterns , 2000, KDD '00.

[20]  Fabrizio Silvestri,et al.  Adaptive and resource-aware mining of frequent sets , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[21]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[22]  Carla E. Brodley,et al.  KDD-Cup 2000 organizers' report: peeling the onion , 2000, SKDD.

[23]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[24]  Ke Wang,et al.  Mining frequent item sets by opportunistic projection , 2002, KDD.

[25]  Charu C. Aggarwal,et al.  A Tree Projection Algorithm for Generation of Frequent Item Sets , 2001, J. Parallel Distributed Comput..

[26]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..