T-Theory Applications to Online Algorithms for the Server Problem

Although largely unnoticed by the online algorithms community, T-theory, a field of discrete mathematics, has contributed to the development of several online algorithms for the k-server problem. A brief summary of the k-server problem, and some important application concepts of T-theory, are given. Additionally, a number of known k-server results are restated using the established terminology of T-theory. Lastly, a previously unpublished 3-competitiveness proof, using T-theory, for the Harmonic algorithm for two servers is presented.

[1]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[2]  Katharina T. Huber,et al.  Antipodal Metrics and Split Systems , 2002, Eur. J. Comb..

[3]  Marek Chrobak,et al.  The Server Problem and On-Line Games , 1991, On-Line Algorithms.

[4]  Bernd Sturmfels,et al.  Classification of Six-Point Metrics , 2004, Electron. J. Comb..

[5]  Marek Chrobak,et al.  The Weighted 2-Server Problem , 2000, STACS.

[6]  Katharina T. Huber,et al.  Six Points Suffice: How to Check for Metric Consistency , 2001, Eur. J. Comb..

[7]  Marek Chrobak,et al.  Metrical Task Systems, the Server Problem and the Work Function Algorithm , 1996, Online Algorithms.

[8]  Hans-Jürgen Bandelt,et al.  Embedding into the rectilinear grid , 1998, Networks.

[9]  Vincent Moulton,et al.  T-theory: An Overview , 1996, Eur. J. Comb..

[10]  Yuval Rabani,et al.  Lower Bounds for Randomized k-Server and Motion-Planning Algorithms , 1994, SIAM J. Comput..

[11]  Marek Chrobak,et al.  The 3-server problem in the plane , 1999, Theor. Comput. Sci..

[12]  Jacobus H. Koolen,et al.  The coherency index , 1998, Discret. Math..

[13]  Sandy Irani,et al.  A Competitive 2-Server Algorithm , 1991, Inf. Process. Lett..

[14]  Neal E. Young,et al.  On-line caching as cache size varies , 1991, SODA '91.

[15]  Andreas W. M. Dress,et al.  Towards a Classification of Transitive Group Actions on Finite Metric Spaces , 1989 .

[16]  Elias Koutsoupias Weak adversaries for the k-server problem , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[17]  Lawrence L. Larmore,et al.  Trackless online algorithms for the server problem , 2000, Inf. Process. Lett..

[18]  Katharina T. Huber,et al.  The Tight Span of an Antipodal Metric Space: Part II—Geometrical Properties , 2004, Discret. Comput. Geom..

[19]  Yuval Rabani,et al.  Lower bounds for randomized k-server and motion-planning algorithms , 1991, STOC '91.

[20]  Katharina T. Huber,et al.  On the structure of the tight-span of a totally split-decomposable metric , 2006, Eur. J. Comb..

[21]  Marek Chrobak,et al.  A simple analysis of the harmonic algorithm for two servers , 2000, Inf. Process. Lett..

[22]  Anil M. Shende,et al.  On space bounded server algorithms , 1993, Proceedings of ICCI'93: 5th International Conference on Computing and Information.

[23]  Marek Chrobak,et al.  A Note on the Server Problem and a Benevolent Adversary , 1991, Inf. Process. Lett..

[24]  Marek Chrobak,et al.  A Better Lower Bound on the Competitive Ratio of the Randomized 2-Server Problem , 1997, Inf. Process. Lett..

[25]  Jon M. Kleinberg,et al.  Geometric Two-Server Algorithms , 1995, Inf. Process. Lett..

[26]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[27]  Edward F. Grove,et al.  The harmonic k-server algorithm is competitive , 2000, JACM.

[28]  Marek Chrobak,et al.  New results on server problems , 1991, SODA '90.

[29]  Marek Chrobak,et al.  An Optimal On-Line Algorithm for k-Servers on Trees , 1991, SIAM J. Comput..

[30]  Marek Chrobak,et al.  A Randomized Algorithm for Two Servers on the Line , 2000, Inf. Comput..

[31]  Katharina T. Huber,et al.  Metric spaces in pure and applied mathematics , 2001 .

[32]  Gábor Tardos,et al.  A competitive 3-server algorithm , 1990, SODA '90.

[33]  Leah Epstein,et al.  More on Weighted Servers or FIFO is Better than LRU , 2002, MFCS.

[34]  Elias Koutsoupias,et al.  On-line algorithms and the K-server conjecture , 1995 .

[35]  Marek Chrobak,et al.  Harmonic is 3-Competitive for Two Servers , 1992, Theor. Comput. Sci..

[36]  Christos H. Papadimitriou,et al.  On the k-server conjecture , 1995, JACM.

[37]  Adi Rosén,et al.  The Distributed k-Server Problem - A Competitive Distributed Translator for k-Server Algorithms , 1997, J. Algorithms.

[38]  Yuval Rabani,et al.  A deterministicO(k3)-competitivek-server algorithm for the circle , 2005, Algorithmica.

[39]  Marek Chrobak,et al.  More on random walks, electrical networks, and the harmonic k-server algorithm , 2002, Inf. Process. Lett..

[40]  Yuval Rabani,et al.  A decomposition theorem and bounds for randomized server problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[41]  Katharina T. Huber,et al.  The tight span of an antipodal metric space - Part I: : Combinatorial properties , 2005, Discret. Math..

[42]  Victor Chepoi,et al.  ATX-Approach to Some Results on Cuts and Metrics , 1997 .

[43]  Andreas Krämer,et al.  Vergleichende Analyse von HTLV-I-Nukleotidsequenzen mittels Split-Zerlegungsmethode , 1996, GMDS.

[44]  Elias Koutsoupias,et al.  On the competitive ratio of the work function algorithm for the k-server problem , 2004, Theor. Comput. Sci..

[45]  Neal Young,et al.  The K-Server Dual and Loose Competitiveness for Paging , 1991, On-Line Algorithms.

[46]  Prabhakar Raghavan,et al.  Random walks on weighted graphs and applications to on-line algorithms , 1993, JACM.

[47]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[48]  Marek Chrobak,et al.  A New Approach to the Server Problem , 1991, SIAM J. Discret. Math..

[49]  Amos Fiat,et al.  Competitive algorithms for the weighted server problem , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[50]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[51]  Vincent Moulton,et al.  A Classification of the Six-point Prime Metrics , 2000, Eur. J. Comb..

[52]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[53]  Lyle A. McGeoch,et al.  Competitive algorithms for on-line problems , 1988, STOC '88.

[54]  J. Isbell Six theorems about injective metric spaces , 1964 .

[55]  Boris Teia Ein Beitrag zum k-Server-Problem , 1993 .

[56]  Yair Bartal,et al.  Randomized k-server algorithms for growth-rate bounded graphs , 2004, SODA '04.

[57]  A. Dress,et al.  A canonical decomposition theory for metrics on a finite set , 1992 .

[58]  Hans-Jürgen Bandelt,et al.  Embedding metric spaces in the rectilinear plane: A six-point criterion , 1996, Discret. Comput. Geom..

[59]  Prabhakar Raghavan,et al.  Memory Versus Randomization in On-line Algorithms (Extended Abstract) , 1989, ICALP.

[60]  George E. Christopher,et al.  Structure and Applications of Totally Decomposable Metrics , 1997 .

[61]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[62]  Alain Guénoche,et al.  Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[63]  Yuval Rabani,et al.  Competitive k-server algorithms , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[64]  Marek Chrobak,et al.  On Fast Algorithms for Two Servers , 1990, MFCS.

[65]  Daniel H. Huson,et al.  Analyzing and Visualizing Sequence and Distance Data Using SplitsTree , 1996, Discret. Appl. Math..