Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

K2's Campaign 9 (K2C9) will conduct a ~3.7 deg^2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE for ≳170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

K. Ulaczyk | Matthew Penny | I. A. Steele | T.-O. Husser | F. V. Hessman | A. Santerne | K. Horne | J. Southworth | Radoslaw Poleski | C. Gelino | D. A. Caldwell | P. Tisserand | R. Akeson | K. Larson | G. Barentsen | U. G. Jorgensen | J. Skottfelt | Rachel A. Street | E. Bachelet | Y. Itow | Calen B. Henderson | David P. Bennett | David W. Hogg | B. Scott Gaudi | W. Zhu | T. Barclay | S. B. Howell | F. Mullally | A. Udalski | M. K. Szyma'nski | J. Skowron | P. Mr'oz | S. Kozlowski | L. Wyrzykowski | P. Pietrukowicz | I. Soszy'nski | M. Pawlak | T. Sumi | F. Abe | Y. Asakura | R. K. Barry | A. Bhattacharya | I. A. Bond | M. Donachie | M. Freeman | A. Fukui | Y. Hirao | N. Koshimoto | M. C. A. Li | C. H. Ling | K. Masuda | Y. Matsubara | Y. Muraki | M. Nagakane | K. Ohnishi | H. Oyokawa | N. Rattenbury | To. Saito | A. Sharan | D. J. Sullivan | P. J. Tristram | A. Yonehara | D. M. Bramich | A. Cassan | M. Dominik | R. Figuera Jaimes | M. Hundertmark | S. Mao | C. Ranc | R. Schmidt | C. Snodgrass | Y. Tsapras | J. Wambsganss | V. Bozza | M. J. Burgdorf | S. Calchi Novati | S. Ciceri | G. D'Ago | D. F. Evans | T. C. Hinse | L. Mancini | A. Popovas | M. Rabus | S. Rahvar | G. Scarpetta | E. Unda-Sanzana | S. T. Bryson | M. R. Haas | K. McCalmont | M. Packard | C. Peterson | D. Putnam | L. Reedy | S. Ross | J. E. Van Cleve | V. Batista | J.-P. Beaulieu | C. A. Beichman | G. Bryden | D. Ciardi | A. Cole | C. Coutures | D. Foreman-Mackey | P. Fouqu'e | M. Friedmann | S. Kaspi | E. Kerins | H. Korhonen | D. Lang | C.-H. Lee | C. H. Lineweaver | D. Maoz | J.-B. Marquette | F. Mogavero | J. C. Morales | D. Nataf | R. W. Pogge | Y. Shvartzvald | D. Suzuki | M. Tamura | D. Wang | J. Beaulieu | E. Kerins | M. Penny | D. Hogg | D. Lang | G. Scarpetta | D. Maoz | E. Bachelet | B. Gaudi | F. Mullally | D. Bennett | R. Poleski | R. Street | K. Ulaczyk | M. Tamura | A. Santerne | M. Burgdorf | C. Beichman | J. Wambsganss | M. Pawlak | R. Pogge | D. Ciardi | C. Lineweaver | I. Steele | W. Zhu | L. Mancini | S. Bryson | S. Howell | D. Caldwell | J. Cleve | T. Barclay | D. Foreman-Mackey | D. Bramich | G. Barentsen | R. Akeson | K. Larson | D. Putnam | U. Jørgensen | K. Horne | M. Dominik | S. Novati | J. Skottfelt | S. Ciceri | A. Fukui | F. Abe | S. Rahvar | A. Udalski | R. Barry | G. Bryden | C. Snodgrass | E. Unda-Sanzana | C. Henderson | S. Kaspi | J. Morales | M. Rabus | H. Korhonen | V. Bozza | T. Hinse | M. Hundertmark | R. Schmidt | J. Southworth | T. Husser | I. Soszy'nski | M. Szyma'nski | P. Pietrukowicz | J. Skowron | S. Kozłowski | L. Wyrzykowski | S. Mao | D. Sullivan | Y. Itow | Y. Matsubara | Y. Muraki | P. Tisserand | F. Hessman | P. Tristram | Y. Tsapras | J. Marquette | Y. Shvartzvald | P. Mr'oz | K. Masuda | C. Gelino | G. D’ago | P. Fouqu'e | T. Sumi | I. Bond | N. Rattenbury | A. Cassan | C. Ling | K. Ohnishi | M. Freeman | D. Suzuki | C. Coutures | A. Yonehara | D. Nataf | V. Batista | C. Ranc | Y. Hirao | N. Koshimoto | A. Cole | C. Peterson | L. Reedy | M. Packard | M. Li | Y. Asakura | D. Evans | R. Jaimes | A. Popovas | A. Sharan | M. Donachie | M. Nagakane | C.-H. Lee | H. Oyokawa | M. Friedmann | A. Bhattacharya | F. Mogavero | M. Haas | S. C. Novati | T. Saito | K. McCalmont | S. Ross | D. Wang | T. Saito

[1]  K. Ulaczyk,et al.  BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.

[2]  Austin B. Tomaney,et al.  Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .

[3]  M. Dominik,et al.  Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .

[4]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[5]  Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. I. METHODOLOGY , 2014, 1404.7495.

[6]  Andrew Gould,et al.  GEOSYNCHRONOUS MICROLENS PARALLAXES , 2012, 1211.6384.

[7]  M. R. Haas,et al.  FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES , 2016, 1605.02825.

[8]  Evgenya L. Shkolnik,et al.  PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS , 2014, 1411.3722.

[9]  K. Ulaczyk,et al.  SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY , 2015, 1508.06636.

[10]  Jennifer C. Yee,et al.  CRITERIA FOR SAMPLE SELECTION TO MAXIMIZE PLANET SENSITIVITY AND YIELD FROM SPACE-BASED MICROLENS PARALLAX SURVEYS , 2015, 1505.00014.

[11]  P. J. Wheatley,et al.  ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below , 2008, 0801.2162.

[12]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[13]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[14]  D. Hogg,et al.  EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.

[15]  Shude Mao,et al.  Detectability of orbital motion in stellar binary and planetary microlenses , 2010, 1010.5940.

[16]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[17]  B. Monard,et al.  EXTREME MAGNIFICATION MICROLENSING EVENT OGLE-2008-BLG-279: STRONG LIMITS ON PLANETARY COMPANIONS TO THE LENS STAR , 2009, 0907.5411.

[18]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[19]  C. J. Mottram,et al.  RINGO3: a multi-colour fast response polarimeter , 2012, Other Conferences.

[20]  K. Ulaczyk,et al.  FIRST SPACE-BASED MICROLENS PARALLAX MEASUREMENT OF AN ISOLATED STAR: SPITZER OBSERVATIONS OF OGLE-2014-BLG-0939 , 2014, 1410.5429.

[21]  Sang-Mok Cha,et al.  Design and fabrication of three 1.6-meter telescopes for the Korea Microlensing Telescope Network (KMTNet) , 2012, Other Conferences.

[22]  Mark A. Walker,et al.  Parallax effects in binary microlensing events , 1995 .

[23]  Andrew Gould,et al.  Extreme Microlensing toward the Galactic Bulge , 1997 .

[24]  K. Ulaczyk,et al.  A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.

[25]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR , 2014, 1410.4219.

[26]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[27]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS AND DISTANCE MEASUREMENTS OF BINARY LENS SYSTEM OGLE-2014-BLG-1050L , 2015, 1501.04107.

[28]  J. B. Marquette,et al.  OGLE-2005-BLG-018: CHARACTERIZATION OF FULL PHYSICAL AND ORBITAL PARAMETERS OF A GRAVITATIONAL BINARY LENS , 2011, 1104.5094.

[29]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[30]  B. Monard,et al.  THE EXTREME MICROLENSING EVENT OGLE-2007-BLG-224: TERRESTRIAL PARALLAX OBSERVATION OF A THICK-DISK BROWN DWARF , 2009, 0904.0249.

[31]  K. Ulaczyk,et al.  MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING , 2015, 1510.02097.

[32]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[33]  Mareki Honma MACHO Mass Determination Based on Space Telescope Observation , 1999 .

[34]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[35]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[36]  B. Scott Gaudi,et al.  Microlensing Surveys for Exoplanets , 2012 .

[37]  R. Poleski,et al.  Empirical microlensing event rates predicted by a phenomenological model , 2015, 1505.07104.

[38]  T. A. Lister,et al.  RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.

[39]  R. Di Stefano,et al.  Interpretation of gravitational microlensing by binary systems , 1995 .

[40]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[41]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[42]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[43]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VI. PLANET SAMPLE FROM Q1–Q16 (47 MONTHS) , 2015, 1502.02038.

[44]  Andrew Gould,et al.  MACHO Velocities from Satellite-based Parallaxes , 1994 .

[45]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[46]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[47]  K. Ulaczyk,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .

[48]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[49]  Sang-Mok Cha,et al.  KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .

[50]  K. Ulaczyk,et al.  PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS , 2014, 1411.7378.

[51]  B. Monard,et al.  MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.

[52]  Andrew Gould,et al.  Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions , 2014, 1408.0797.

[53]  Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. II. THE FREQUENCY OF PLANETS ORBITING M DWARFS , 2014, 1404.7500.

[54]  K. Ulaczyk,et al.  SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK , 2015, 1508.07027.

[55]  B. Scott Gaudi,et al.  SYNTHESIZING EXOPLANET DEMOGRAPHICS: A SINGLE POPULATION OF LONG-PERIOD PLANETARY COMPANIONS TO M DWARFS CONSISTENT WITH MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEYS , 2015, 1508.04434.

[56]  K. Ulaczyk,et al.  First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.

[57]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[58]  K. Masuda,et al.  Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis , 2002, astro-ph/0207604.

[59]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[60]  B. Monard,et al.  SUB-SATURN PLANET MOA-2008-BLG-310Lb: LIKELY TO BE IN THE GALACTIC BULGE , 2009, 0908.0529.

[61]  S. Kent,et al.  Galactic structure from the Spacelab Infrared Telescope. III: A dynamical model for the Milky Way bulge , 1992 .

[62]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[63]  P. Vreeswijk,et al.  The 1995 Pilot Campaign of PLANET: Searching for Microlensing Anomalies through Precise, Rapid, Round-the-Clock Monitoring , 1998, astro-ph/9807299.

[64]  K. Ulaczyk,et al.  CANDIDATE GRAVITATIONAL MICROLENSING EVENTS FOR FUTURE DIRECT LENS IMAGING , 2014, 1403.3092.

[65]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[66]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[67]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[68]  A. Bhattacharya,et al.  CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.

[69]  A. Udalski,et al.  MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.

[70]  Y. Alibert,et al.  Theoretical models of planetary system formation. II. Post-formation evolution , 2015, 1502.04260.

[71]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[72]  Andrew Gould,et al.  Satellite Parallaxes of Lensing Events toward the Galactic Bulge , 1996 .

[73]  Calen B. Henderson,et al.  IS THE GALACTIC BULGE DEVOID OF PLANETS? , 2016, 1601.02807.

[74]  K. Ulaczyk,et al.  Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.

[75]  Andrew Gould,et al.  REANALYSIS OF THE GRAVITATIONAL MICROLENSING EVENT MACHO-97-BLG-41 BASED ON COMBINED DATA , 2013, 1303.0952.

[76]  K. Masuda,et al.  Ju l 2 00 2 Microlensing optical depth towards the Galactic bulge from MOA observations during 2000 with Difference Image Analysis , 2006 .

[77]  Jean Surdej,et al.  Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .

[78]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[79]  B. Scott Gaudi,et al.  OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1406.2316.

[80]  Byeong-Gon Park,et al.  Properties of Central Caustics in Planetary Microlensing , 2005, astro-ph/0505363.

[81]  Arlin P. S. Crotts,et al.  M31: A Unique Laboratory for Gravitational Microlensing , 1992 .

[82]  M. J. Lehner,et al.  First Observation of Parallax in a Gravitational Microlensing Event , 1995, astro-ph/9506114.

[83]  K. Ulaczyk,et al.  OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY SUBARU AO IMAGING , 2015, 1506.08850.

[84]  K. Ulaczyk,et al.  The Second Multiple-planet System Discovered by Microlensing: OGLE-2012-BLG-0026Lb, c—A Pair of Jovian Planets beyond the Snow Line , 2013 .

[85]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[86]  E. Ofek,et al.  OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.

[87]  K. von Braun,et al.  The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.

[88]  Yossi Shvartzvald,et al.  Second-generation microlensing planet surveys: a realistic simulation , 2011, 1107.5809.

[89]  Martin Dominik,et al.  The complete catalogue of light curves in equal-mass binary microlensing , 2015, 1501.02219.

[90]  Hans J. Kärcher,et al.  The azimuth axes mechanisms for the ATST telescope mount assembly , 2012, Other Conferences.

[91]  Jae Woo Lee,et al.  Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.

[92]  J. Yee,et al.  WFIRST PLANET MASSES FROM MICROLENS PARALLAX , 2013, 1303.6957.

[93]  Calen B. Henderson,et al.  PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1410.4843.

[94]  A. Gal-Yam,et al.  MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS , 2012, 1201.1002.

[95]  K. Ulaczyk,et al.  MOA-2013-BLG-220Lb: MASSIVE PLANETARY COMPANION TO GALACTIC-DISK HOST , 2014, 1403.2134.

[96]  Andrew Gould,et al.  KEPLER-LIKE MULTI-PLEXING FOR MASS PRODUCTION OF MICROLENS PARALLAXES , 2013, 1310.4208.

[97]  Wei Zhu,et al.  Augmenting WFIRST Microlensing with a Ground-based Telescope Network , 2016, 1601.03043.

[98]  Fergal Mullally,et al.  K2fov: Field of view software for NASA's K2 mission , 2016 .

[99]  F. Grundahl,et al.  The two-colour EMCCD instrument for the Danish 1.54 m telescope and SONG , 2014, 1411.7401.

[100]  Jan Skowron,et al.  OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE , 2014, 1405.3134.

[101]  Ho Jin,et al.  Wide-field telescope design for the KMTNet project , 2011, Optical Engineering + Applications.

[102]  B. Scott Gaudi,et al.  Characterization of Gravitational Microlensing Planetary Host Stars , 2007 .

[103]  S. Seitz,et al.  Microlensing toward Crowded Fields: Theory and Applications to M31 , 2005, astro-ph/0510723.