Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey
暂无分享,去创建一个
K. Ulaczyk | Matthew Penny | I. A. Steele | T.-O. Husser | F. V. Hessman | A. Santerne | K. Horne | J. Southworth | Radoslaw Poleski | C. Gelino | D. A. Caldwell | P. Tisserand | R. Akeson | K. Larson | G. Barentsen | U. G. Jorgensen | J. Skottfelt | Rachel A. Street | E. Bachelet | Y. Itow | Calen B. Henderson | David P. Bennett | David W. Hogg | B. Scott Gaudi | W. Zhu | T. Barclay | S. B. Howell | F. Mullally | A. Udalski | M. K. Szyma'nski | J. Skowron | P. Mr'oz | S. Kozlowski | L. Wyrzykowski | P. Pietrukowicz | I. Soszy'nski | M. Pawlak | T. Sumi | F. Abe | Y. Asakura | R. K. Barry | A. Bhattacharya | I. A. Bond | M. Donachie | M. Freeman | A. Fukui | Y. Hirao | N. Koshimoto | M. C. A. Li | C. H. Ling | K. Masuda | Y. Matsubara | Y. Muraki | M. Nagakane | K. Ohnishi | H. Oyokawa | N. Rattenbury | To. Saito | A. Sharan | D. J. Sullivan | P. J. Tristram | A. Yonehara | D. M. Bramich | A. Cassan | M. Dominik | R. Figuera Jaimes | M. Hundertmark | S. Mao | C. Ranc | R. Schmidt | C. Snodgrass | Y. Tsapras | J. Wambsganss | V. Bozza | M. J. Burgdorf | S. Calchi Novati | S. Ciceri | G. D'Ago | D. F. Evans | T. C. Hinse | L. Mancini | A. Popovas | M. Rabus | S. Rahvar | G. Scarpetta | E. Unda-Sanzana | S. T. Bryson | M. R. Haas | K. McCalmont | M. Packard | C. Peterson | D. Putnam | L. Reedy | S. Ross | J. E. Van Cleve | V. Batista | J.-P. Beaulieu | C. A. Beichman | G. Bryden | D. Ciardi | A. Cole | C. Coutures | D. Foreman-Mackey | P. Fouqu'e | M. Friedmann | S. Kaspi | E. Kerins | H. Korhonen | D. Lang | C.-H. Lee | C. H. Lineweaver | D. Maoz | J.-B. Marquette | F. Mogavero | J. C. Morales | D. Nataf | R. W. Pogge | Y. Shvartzvald | D. Suzuki | M. Tamura | D. Wang | J. Beaulieu | E. Kerins | M. Penny | D. Hogg | D. Lang | G. Scarpetta | D. Maoz | E. Bachelet | B. Gaudi | F. Mullally | D. Bennett | R. Poleski | R. Street | K. Ulaczyk | M. Tamura | A. Santerne | M. Burgdorf | C. Beichman | J. Wambsganss | M. Pawlak | R. Pogge | D. Ciardi | C. Lineweaver | I. Steele | W. Zhu | L. Mancini | S. Bryson | S. Howell | D. Caldwell | J. Cleve | T. Barclay | D. Foreman-Mackey | D. Bramich | G. Barentsen | R. Akeson | K. Larson | D. Putnam | U. Jørgensen | K. Horne | M. Dominik | S. Novati | J. Skottfelt | S. Ciceri | A. Fukui | F. Abe | S. Rahvar | A. Udalski | R. Barry | G. Bryden | C. Snodgrass | E. Unda-Sanzana | C. Henderson | S. Kaspi | J. Morales | M. Rabus | H. Korhonen | V. Bozza | T. Hinse | M. Hundertmark | R. Schmidt | J. Southworth | T. Husser | I. Soszy'nski | M. Szyma'nski | P. Pietrukowicz | J. Skowron | S. Kozłowski | L. Wyrzykowski | S. Mao | D. Sullivan | Y. Itow | Y. Matsubara | Y. Muraki | P. Tisserand | F. Hessman | P. Tristram | Y. Tsapras | J. Marquette | Y. Shvartzvald | P. Mr'oz | K. Masuda | C. Gelino | G. D’ago | P. Fouqu'e | T. Sumi | I. Bond | N. Rattenbury | A. Cassan | C. Ling | K. Ohnishi | M. Freeman | D. Suzuki | C. Coutures | A. Yonehara | D. Nataf | V. Batista | C. Ranc | Y. Hirao | N. Koshimoto | A. Cole | C. Peterson | L. Reedy | M. Packard | M. Li | Y. Asakura | D. Evans | R. Jaimes | A. Popovas | A. Sharan | M. Donachie | M. Nagakane | C.-H. Lee | H. Oyokawa | M. Friedmann | A. Bhattacharya | F. Mogavero | M. Haas | S. C. Novati | T. Saito | K. McCalmont | S. Ross | D. Wang | T. Saito
[1] K. Ulaczyk,et al. BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.
[2] Austin B. Tomaney,et al. Expanding the Realm of Microlensing Surveys with Difference Image Photometry , 1996 .
[3] M. Dominik,et al. Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .
[4] Andrew Gould,et al. Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .
[5] Scott Gaudi,et al. SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. I. METHODOLOGY , 2014, 1404.7495.
[6] Andrew Gould,et al. GEOSYNCHRONOUS MICROLENS PARALLAXES , 2012, 1211.6384.
[7] M. R. Haas,et al. FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES , 2016, 1605.02825.
[8] Evgenya L. Shkolnik,et al. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS , 2014, 1411.3722.
[9] K. Ulaczyk,et al. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY , 2015, 1508.06636.
[10] Jennifer C. Yee,et al. CRITERIA FOR SAMPLE SELECTION TO MAXIMIZE PLANET SENSITIVITY AND YIELD FROM SPACE-BASED MICROLENS PARALLAX SURVEYS , 2015, 1505.00014.
[11] P. J. Wheatley,et al. ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below , 2008, 0801.2162.
[12] Andrew Gould,et al. SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.
[13] Neda Safizadeh,et al. The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .
[14] D. Hogg,et al. EXOPLANET POPULATION INFERENCE AND THE ABUNDANCE OF EARTH ANALOGS FROM NOISY, INCOMPLETE CATALOGS , 2014, 1406.3020.
[15] Shude Mao,et al. Detectability of orbital motion in stellar binary and planetary microlenses , 2010, 1010.5940.
[16] F. Mullally,et al. The K2 Mission: Characterization and Early Results , 2014, 1402.5163.
[17] B. Monard,et al. EXTREME MAGNIFICATION MICROLENSING EVENT OGLE-2008-BLG-279: STRONG LIMITS ON PLANETARY COMPANIONS TO THE LENS STAR , 2009, 0907.5411.
[18] G. Marcy,et al. Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.
[19] C. J. Mottram,et al. RINGO3: a multi-colour fast response polarimeter , 2012, Other Conferences.
[20] K. Ulaczyk,et al. FIRST SPACE-BASED MICROLENS PARALLAX MEASUREMENT OF AN ISOLATED STAR: SPITZER OBSERVATIONS OF OGLE-2014-BLG-0939 , 2014, 1410.5429.
[21] Sang-Mok Cha,et al. Design and fabrication of three 1.6-meter telescopes for the Korea Microlensing Telescope Network (KMTNet) , 2012, Other Conferences.
[22] Mark A. Walker,et al. Parallax effects in binary microlensing events , 1995 .
[23] Andrew Gould,et al. Extreme Microlensing toward the Galactic Bulge , 1997 .
[24] K. Ulaczyk,et al. A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.
[25] K. Ulaczyk,et al. SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR , 2014, 1410.4219.
[26] A. Udalski. The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .
[27] K. Ulaczyk,et al. SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS AND DISTANCE MEASUREMENTS OF BINARY LENS SYSTEM OGLE-2014-BLG-1050L , 2015, 1501.04107.
[28] J. B. Marquette,et al. OGLE-2005-BLG-018: CHARACTERIZATION OF FULL PHYSICAL AND ORBITAL PARAMETERS OF A GRAVITATIONAL BINARY LENS , 2011, 1104.5094.
[29] Cheongho Han,et al. Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.
[30] B. Monard,et al. THE EXTREME MICROLENSING EVENT OGLE-2007-BLG-224: TERRESTRIAL PARALLAX OBSERVATION OF A THICK-DISK BROWN DWARF , 2009, 0904.0249.
[31] K. Ulaczyk,et al. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING , 2015, 1510.02097.
[32] C. Alard. Image subtraction using a space-varying kernel , 2000 .
[33] Mareki Honma. MACHO Mass Determination Based on Space Telescope Observation , 1999 .
[34] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[35] Andrew Gould,et al. A Natural Formalism for Microlensing , 2000, astro-ph/0001421.
[36] B. Scott Gaudi,et al. Microlensing Surveys for Exoplanets , 2012 .
[37] R. Poleski,et al. Empirical microlensing event rates predicted by a phenomenological model , 2015, 1505.07104.
[38] T. A. Lister,et al. RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.
[39] R. Di Stefano,et al. Interpretation of gravitational microlensing by binary systems , 1995 .
[40] A. Gal-Yam,et al. OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.
[41] Bohdan Paczynski,et al. Gravitational microlensing by the galactic halo , 1986 .
[42] S. Refsdal,et al. On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .
[43] Khadeejah A. Zamudio,et al. PLANETARY CANDIDATES OBSERVED BY KEPLER. VI. PLANET SAMPLE FROM Q1–Q16 (47 MONTHS) , 2015, 1502.02038.
[44] Andrew Gould,et al. MACHO Velocities from Satellite-based Parallaxes , 1994 .
[45] John Asher Johnson,et al. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.
[46] M. R. Haas,et al. TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.
[47] K. Ulaczyk,et al. Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .
[48] John C. Geary,et al. ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.
[49] Sang-Mok Cha,et al. KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .
[50] K. Ulaczyk,et al. PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS , 2014, 1411.7378.
[51] B. Monard,et al. MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.
[52] Andrew Gould,et al. Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions , 2014, 1408.0797.
[53] Scott Gaudi,et al. SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. II. THE FREQUENCY OF PLANETS ORBITING M DWARFS , 2014, 1404.7500.
[54] K. Ulaczyk,et al. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK , 2015, 1508.07027.
[55] B. Scott Gaudi,et al. SYNTHESIZING EXOPLANET DEMOGRAPHICS: A SINGLE POPULATION OF LONG-PERIOD PLANETARY COMPANIONS TO M DWARFS CONSISTENT WITH MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEYS , 2015, 1508.04434.
[56] K. Ulaczyk,et al. First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.
[57] Bohdan Paczynski,et al. Gravitational microlensing by double stars and planetary systems , 1991 .
[58] K. Masuda,et al. Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis , 2002, astro-ph/0207604.
[59] F. Fressin,et al. THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.
[60] B. Monard,et al. SUB-SATURN PLANET MOA-2008-BLG-310Lb: LIKELY TO BE IN THE GALACTIC BULGE , 2009, 0908.0529.
[61] S. Kent,et al. Galactic structure from the Spacelab Infrared Telescope. III: A dynamical model for the Milky Way bulge , 1992 .
[62] K. Ulaczyk,et al. Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.
[63] P. Vreeswijk,et al. The 1995 Pilot Campaign of PLANET: Searching for Microlensing Anomalies through Precise, Rapid, Round-the-Clock Monitoring , 1998, astro-ph/9807299.
[64] K. Ulaczyk,et al. CANDIDATE GRAVITATIONAL MICROLENSING EVENTS FOR FUTURE DIRECT LENS IMAGING , 2014, 1403.3092.
[65] Edward J. Wollack,et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.
[66] Andrew Gould,et al. Discovering Planetary Systems through Gravitational Microlenses , 1992 .
[67] Andrew Gould,et al. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.
[68] A. Bhattacharya,et al. CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.
[69] A. Udalski,et al. MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.
[70] Y. Alibert,et al. Theoretical models of planetary system formation. II. Post-formation evolution , 2015, 1502.04260.
[71] B. Monard,et al. A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.
[72] Andrew Gould,et al. Satellite Parallaxes of Lensing Events toward the Galactic Bulge , 1996 .
[73] Calen B. Henderson,et al. IS THE GALACTIC BULGE DEVOID OF PLANETS? , 2016, 1601.02807.
[74] K. Ulaczyk,et al. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.
[75] Andrew Gould,et al. REANALYSIS OF THE GRAVITATIONAL MICROLENSING EVENT MACHO-97-BLG-41 BASED ON COMBINED DATA , 2013, 1303.0952.
[76] K. Masuda,et al. Ju l 2 00 2 Microlensing optical depth towards the Galactic bulge from MOA observations during 2000 with Difference Image Analysis , 2006 .
[77] Jean Surdej,et al. Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .
[78] Russel J. White,et al. A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.
[79] B. Scott Gaudi,et al. OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1406.2316.
[80] Byeong-Gon Park,et al. Properties of Central Caustics in Planetary Microlensing , 2005, astro-ph/0505363.
[81] Arlin P. S. Crotts,et al. M31: A Unique Laboratory for Gravitational Microlensing , 1992 .
[82] M. J. Lehner,et al. First Observation of Parallax in a Gravitational Microlensing Event , 1995, astro-ph/9506114.
[83] K. Ulaczyk,et al. OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY SUBARU AO IMAGING , 2015, 1506.08850.
[84] K. Ulaczyk,et al. The Second Multiple-planet System Discovered by Microlensing: OGLE-2012-BLG-0026Lb, c—A Pair of Jovian Planets beyond the Snow Line , 2013 .
[85] Y. Watase,et al. Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .
[86] E. Ofek,et al. OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.
[87] K. von Braun,et al. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.
[88] Yossi Shvartzvald,et al. Second-generation microlensing planet surveys: a realistic simulation , 2011, 1107.5809.
[89] Martin Dominik,et al. The complete catalogue of light curves in equal-mass binary microlensing , 2015, 1501.02219.
[90] Hans J. Kärcher,et al. The azimuth axes mechanisms for the ATST telescope mount assembly , 2012, Other Conferences.
[91] Jae Woo Lee,et al. Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.
[92] J. Yee,et al. WFIRST PLANET MASSES FROM MICROLENS PARALLAX , 2013, 1303.6957.
[93] Calen B. Henderson,et al. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1410.4843.
[94] A. Gal-Yam,et al. MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS , 2012, 1201.1002.
[95] K. Ulaczyk,et al. MOA-2013-BLG-220Lb: MASSIVE PLANETARY COMPANION TO GALACTIC-DISK HOST , 2014, 1403.2134.
[96] Andrew Gould,et al. KEPLER-LIKE MULTI-PLEXING FOR MASS PRODUCTION OF MICROLENS PARALLAXES , 2013, 1310.4208.
[97] Wei Zhu,et al. Augmenting WFIRST Microlensing with a Ground-based Telescope Network , 2016, 1601.03043.
[98] Fergal Mullally,et al. K2fov: Field of view software for NASA's K2 mission , 2016 .
[99] F. Grundahl,et al. The two-colour EMCCD instrument for the Danish 1.54 m telescope and SONG , 2014, 1411.7401.
[100] Jan Skowron,et al. OGLE-III MICROLENSING EVENTS AND THE STRUCTURE OF THE GALACTIC BULGE , 2014, 1405.3134.
[101] Ho Jin,et al. Wide-field telescope design for the KMTNet project , 2011, Optical Engineering + Applications.
[102] B. Scott Gaudi,et al. Characterization of Gravitational Microlensing Planetary Host Stars , 2007 .
[103] S. Seitz,et al. Microlensing toward Crowded Fields: Theory and Applications to M31 , 2005, astro-ph/0510723.