Surface-Active Compounds from Microorganisms

Publisher Summary This chapter discusses the metabolites produced by microorganisms, which demonstrate surface activity. It focuses on systems in which the metabolite has been characterized and shown to be surface active. The examples of biosurfactant modification, usually by substrate manipulation are also reviewed. Biosurfactants are important because they present a broad range of surfactant types and properties than the available synthetic surfactants. Furthermore, they are usually biodegradable, which reduces the potential of pollution. The surfactants produced by microorganisms are usually lipids. Their surfactant properties result from a combination of polar and apolar moieties in a single molecule. The apolar or hydrophobic portion is normally a hydrocarbon. The polar or hydrophilic groups include a wide range of possibilities. A method used to determine the surface activity is to measure the surface tension of the whole broth or a dilution of the whole broth. The most commonly isolated microbial surfactants, or emulsifying agents, are glycolipids. Most of the trehalose lipids considered in the chapter have the same general structure of two α-branched β-hydroxy fatty acids esterified to a trehalose molecule.

[1]  I. Lin,et al.  The effect of structural modifications on the hydrophile—lipophile balance of ionic surfactants , 1973 .

[2]  M. Klug,et al.  Utilization of aliphatic hydrocarbons by micro-organisms. , 1971, Advances in microbial physiology.

[3]  A. Fiechter,et al.  Novel energy and carbon sources B. Liquid and solid hydrocarbons , 1971 .

[4]  J. Shively,et al.  The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. , 1972, The Journal of biological chemistry.

[5]  E. Lederer,et al.  Sur la structure des diesters de tréhalose (“cord factors”) produits par Nocardia asteroides et Nocardia rhodochrous , 1970 .

[6]  N. Yasuda,et al.  Effect of Peptidelipids Produced by Bacillus on the Enzymatic Lysis of Gram-negative Bacterial Cells , 1976 .

[7]  Takeo Suzuki,et al.  Fructose-Lipids of Arthrobacter, Corynebacteria, Nocardia and Mycobacteria Grown on Fructose , 1974 .

[8]  A. W. Bernheimer,et al.  Nature and properties of a cytolytic agent produced by Bacillus subtilis. , 1970, Journal of general microbiology.

[9]  L. Erickson,et al.  Characteristics of hydrocarbon uptake in cultures with two liquid phases , 1977, Biotechnology and bioengineering.

[10]  P. Gorin,et al.  HYDROXY FATTY ACID GLYCOSIDES OF SOPHOROSE FROM TORULOPSIS MAGNOLIAE , 1961 .

[11]  Takeo Suzuki,et al.  Sucrose Lipids of Arthrobacteria, Corynebacteria and Nocardia Grown on Sucrose , 1974 .

[12]  W. Finnerty,et al.  Microbial Assimilation of Hydrocarbons: Identification of Phospholipids , 1970, Journal of bacteriology.

[13]  Gakuzo Tamura,et al.  Determination of Fatty Acid in Surfactin and Elucidation of the Total Structure of Surfactin , 1969 .

[14]  J. Tocanne,et al.  Importance of glycerol and fatty acid residues on the ionic properties of phosphatidylglycerols at the air-water interface. , 1977, Chemistry and physics of lipids.

[15]  J. Zajic,et al.  Flocculant production from kerosene , 1972 .

[16]  K. Kondo,et al.  A New Lysine-containing Lipid Isolated from Agrobacterium tumefaciens , 1976 .

[17]  O. Käppeli,et al.  Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport , 1977, Journal of bacteriology.

[18]  W. Finnerty,et al.  Comparative analysis of the lipids of Acinetobacter species grown on hexadecane , 1975, Journal of bacteriology.

[19]  H. B. Woodruff,et al.  A CRYSTALLINE ANTIFUNGAL AGENT, MYCOSUBTILIN, ISOLATED FROM SUBTILIN BROTH. , 1949, The Journal of clinical investigation.

[20]  D. Small A classification of biologic lipids based upon their interaction in aqueous systems , 1968, Journal of the American Oil Chemists' Society.

[21]  J. Kawanami Lipids of Streptomyces toyocaensis. On the structure of siolipin. , 1971, Chemistry and physics of lipids.

[22]  M. Kikuchi,et al.  Relation between the Extracellular Accumulation of L-Glutamic Acid and the Excretion of Phospholipids by Penicillintreated Corynebacterium alkanolyticum , 1973 .

[23]  I. Shiio,et al.  Microbial Production of Long-chain Dicarboxylic Acids from n-Alkanes Part II , 1972 .

[24]  W. Finnerty,et al.  Microbial Assimilation of Hydrocarbons I. Fatty Acids Derived from Normal Alkanes , 1968, Journal of bacteriology.

[25]  J R Edwards,et al.  Structure of a rhamnolipid from Pseudomonas aeruginosa. , 1965, Archives of biochemistry and biophysics.

[26]  H. Hauser,et al.  Spreading of solid glycerides and phospholipids at the air—water interface , 1974 .

[27]  Kawana Jun'ichi,et al.  Siolipin A: A new lipoamino acid ester isolated from Streptomyces sioyaensis , 1968 .

[28]  Koichi Yamada,et al.  Formation of Protein-like Activator for n-Alkane Oxidation and Its Properties , 1977 .

[29]  A. Kakinuma,et al.  Determination of the Location of Lactone Ring in Surfactin , 1969 .

[30]  M. Kikuchi,et al.  Extracellular Accumulation of Phospholipids, UDP-N-Acetylhexosamine Derivatives and L-Glutamic Acid by Penicillin-treated Corynebacterium alkanolyticum , 1973 .

[31]  E. Lederer Glycolipids of mycobacteria and related microorganisms , 1967 .

[32]  A. Kakinuma,et al.  Determination of Amino Acid Sequence in Surfactin, a Crystalline Peptidelipid Surfactant Produced by Bacillus subtilis , 1969 .

[33]  F. Besson,et al.  Structure de la bacillomycine L, antibiotique de Bacillus subtils , 1977 .

[34]  Takeo Suzuki,et al.  Trehalose Lipid and α-Branched-β-hydroxy Fatty Acid Formed by Bacteria Grown on n -Alkanes , 1969 .

[35]  J. Stewart,et al.  Effect of Environmental Parameters on Bacterial Degradation of Bunker C Oil, Crude Oils, and Hydrocarbons , 1974, Applied microbiology.

[36]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate , 1979, Applied and environmental microbiology.

[37]  S. Tannenbaum,et al.  Growth of a Thermophilic Bacterium on Hydrocarbons: A New Source of Single-Cell Protein , 1967, Science.

[38]  P. Steck,et al.  Mycolic acids. A reinvestigation. , 1978, The Journal of biological chemistry.

[39]  D. Chapman,et al.  Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. , 1968, Biochimica et biophysica acta.

[40]  D. Brundish,et al.  The structure and possible function of the glycolipid from Staphylococcus lactis I3. , 1967, The Biochemical journal.

[41]  W. Umbreit,et al.  Extracellular Lipid of Thiobacillus thiooxidans , 1971, Journal of bacteriology.

[42]  J. Stewart,et al.  Bacterial hydrocarbon oxidation. II. Ester formation from alkanes. , 1959, Journal of bacteriology.

[43]  L. Erickson,et al.  Hydrocarbon uptake in hydrocarbon fermentations , 1977, Biotechnology and bioengineering.

[44]  E. J. McKenna,et al.  The biology of hydrocarbons. , 1965, Annual review of microbiology.

[45]  H. Blanch,et al.  The functional role of lipids in hydrocarbon assimilation , 1974, Biotechnology and bioengineering.

[46]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties , 1979, Applied and environmental microbiology.

[47]  M. Moo-young,et al.  Hydrocarbon fermentations: Oxidation mechanism and nonionic‐surfactant effects in a culture of Candida lipolytica , 1973 .

[48]  S. Wilkinson Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens. , 1972, Biochimica et biophysica acta.

[49]  D. Cooper,et al.  Production of surface-active lipids by Corynebacterium lepus , 1979, Applied and environmental microbiology.

[50]  D. F. Jones,et al.  Microbiological oxidation of long-chain aliphatic compounds. I. Alkanes and alk-1-enes. , 1968, Journal of the Chemical Society. Perkin transactions 1.

[51]  R. Colwell,et al.  Microbial petroleum degradation: use of mixed hydrocarbon substrates. , 1974, Applied microbiology.

[52]  H. Ohsawa,et al.  Emulsifying Factor of Hydrocarbon Produced by a Hydrocarbon-Assimilating Yeast , 1969 .

[53]  D. Cooper,et al.  Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene , 1979, Journal of bacteriology.

[54]  G. Michel,et al.  Structure de la mycosubtiline, antibiotique isolé de Bacillus subtilis , 1976 .

[55]  F. D. Cook,et al.  Microbial utilization of crude oil. , 1972, Applied microbiology.

[56]  A. Kakinuma,et al.  Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. , 1968, Biochemical and biophysical research communications.

[57]  Takeo Suzuki,et al.  Effect of Rhamnolipids on Growth of Pseudomonas aeruginosa Mutant Deficient in n-Paraffin-utilizing Ability , 1972 .

[58]  P. Gorin,et al.  THE FERMENTATION OF LONG-CHAIN COMPOUNDS BY TORULOPSIS MAGNOLIAE: I. STRUCTURES OF THE HYDROXY FATTY ACIDS OBTAINED BY THE FERMENTATION OF FATTY ACIDS AND HYDROCARBONS , 1962 .

[59]  C. C. Addison,et al.  Part VI.—The surface activity and critical concentrations of aqueous solutions of saturated soaps under conditions of suppressed hydrolysis , 1938 .

[60]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: Chemical and Physical Properties , 1979, Applied and environmental microbiology.

[61]  A. Humphrey A critical review of hydrocarbon fermentations and their industrial utilization , 1967 .

[62]  A. Helenius,et al.  Solubilization of membranes by detergents. , 1975, Biochimica et biophysica acta.

[63]  Koichi Yamada,et al.  Protein-like Activator for n-Alkane Oxidation by Pseudomonas aeruginosa S7B1 , 1972 .

[64]  N Shaw,et al.  Lipid composition as a guide to the classification of bacteria. , 1974, Advances in applied microbiology.

[65]  J. Zajic,et al.  Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus , 1977, Biotechnology and bioengineering.

[66]  H. W. Blanch,et al.  Mechanistic model for microbial growth on hydrocarbons , 1977 .

[67]  A. Cundell,et al.  Microbial degradation of petroleum at low temperature , 1973 .

[68]  B. Newton THE MECHANISM OF THE BACTERICIDAL ACTION OF SURFACE ACTIVE COMPOUNDS: A SUMMARY , 1960 .

[69]  G. E. Jones,et al.  SURFACE-ACTIVE SUBSTANCES PRODUCED BY THIOBACILLUS THIOOXIDANS , 1961, Journal of bacteriology.

[70]  L. Deenen,et al.  MONOMOLECULAR LAYERS OF SYNTHETIC PHOSPHATIDES * , 1962, The Journal of pharmacy and pharmacology.

[71]  J. Zajic,et al.  Production and surface‐active properties of microbial surfactants , 1979 .

[72]  R. Miller,et al.  The effect of ionic surface-active agents on macroconidial plasma membrane of Fusarium sulphureum. , 1977, Canadian journal of microbiology.

[73]  K. Kanai,et al.  The relationship between the chemical structure of fatty acids and their mycobactericidal activity. , 1977, Japanese Journal of Medical Science & Biology.

[74]  R. J. Anderson,et al.  THE CHEMISTRY OF THE LIPIDS OF TUBERCLE BACILLI XXXIII. ISOLATION OF TREHALOSE FROM THE ACETONE-SOLUBLE FAT OF THE HUMAN TUBERCLE BACILLUS , 1933 .

[75]  J. Pudles,et al.  Chemical constitution of a glycolipid from C. diphtheriae P.W.B , 1963 .

[76]  A. Gorchein Studies on the structure of an ornithine-containing lipid from non-sulphur purple bacteria. , 1968, Biochimica et biophysica acta.

[77]  F. Tomita,et al.  Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions). , 1971, The Journal of antibiotics.

[78]  I. Shiio,et al.  Microbial Production of Long-chain Dicarboxylic Acids from n-Alkanes , 1971 .

[79]  N. Owens,et al.  Physical studies of phospholipids. II. Monolayer studies of some synthetic 2,3-diacyl-DL-phosphatidylethanolamines and phosphatidylcholines containing trans double bonds. , 1966, Biochimica et biophysica acta.

[80]  W. E. Gledhill,et al.  The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. , 1971, Advances in applied microbiology.

[81]  W. Finnerty,et al.  Microbial Assimilation of Hydrocarbons: Cellular Distribution of Fatty Acids , 1972 .

[82]  W. Schaeffer,et al.  PHOSPHOTIDYLINOSITOL AS A WETTING AGENT IN SULFUR OXIDATION BY THIOBACILLUS THIOOXIDANS , 1963, Journal of bacteriology.

[83]  K. Komagata,et al.  TAXONOMIC SIGNIFICANCE OF PHOSPHOLIPID COMPOSITION IN AEROBIC GRAM- POSITIVE COCCI , 1975 .

[84]  K. Knox,et al.  Studies on the group F antigen of lactobacilli: isolation of a teichoic acid-lipid complex from Lactobacillus fermenti NCTC 6991. , 1970, Journal of general microbiology.

[85]  A. Fiechter,et al.  The mode of interaction between the substrate and cell surface of the hydrocarbon‐utilizing yeast Candida tropicalis , 1976, Biotechnology and bioengineering.

[86]  G. E. Jones,et al.  Phosphatidyl Glycerol in Thiobacillus thiooxidans , 1965, Journal of bacteriology.

[87]  Koichi Yamada,et al.  Formation of Rhamnolipid by Pseudomonas aeruginosa and its Function in Hydrocarbon Fermentation , 1971 .

[88]  D. F. Jones Novel macrocyclic glycolipids from Torulopsis gropengiesseri , 1967 .