Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation

[1]  B. White,et al.  Ruminococcal cellulosome systems from rumen to human. , 2015, Environmental microbiology.

[2]  E. Bayer,et al.  Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis , 2015, mBio.

[3]  N. Nikolaidis,et al.  Bacterial expansins and related proteins from the world of microbes , 2015, Applied Microbiology and Biotechnology.

[4]  Raphael Lamed,et al.  Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. , 2014, Journal of structural biology.

[5]  A. Kondo,et al.  Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. , 2014, Fungal genetics and biology : FG & B.

[6]  E. Bayer,et al.  Cellulosomics of the cellulolytic thermophile Clostridium clariflavum , 2014, Biotechnology for Biofuels.

[7]  G. Mohr,et al.  The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons , 2014, Biotechnology for Biofuels.

[8]  L. Eurwilaichitr,et al.  Identification of novel bacterial expansins and their synergistic actions on cellulose degradation. , 2014, Bioresource technology.

[9]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[10]  N. Nikolaidis,et al.  Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. , 2014, Molecular biology and evolution.

[11]  Jizhong Zhou,et al.  Dockerin‐containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum , 2014, Molecular microbiology.

[12]  N. Nikolaidis,et al.  Biochemical analysis of expansin-like proteins from microbes. , 2014, Carbohydrate polymers.

[13]  In Jung Kim,et al.  An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. , 2013, Bioresource technology.

[14]  M. Morrison,et al.  Extending the Cellulosome Paradigm: the Modular Clostridium thermocellum Cellulosomal Serpin PinA Is a Broad-Spectrum Inhibitor of Subtilisin-Like Proteases , 2013, Applied and Environmental Microbiology.

[15]  In Jung Kim,et al.  Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose , 2013, Applied Microbiology and Biotechnology.

[16]  Jie Zhang,et al.  Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. , 2012, Journal of microbiological methods.

[17]  Yingang Feng,et al.  Resonance assignments of cohesin and dockerin domains from Clostridium acetobutylicum ATCC824 , 2012, Biomolecular NMR Assignments.

[18]  Lynne A. Goodwin,et al.  Complete Genome Sequence of Clostridium clariflavum DSM 19732 , 2012, Standards in genomic sciences.

[19]  K. Kuroda,et al.  Putative Role of Cellulosomal Protease Inhibitors in Clostridium cellulovorans Based on Gene Expression and Measurement of Activities , 2011, Journal of bacteriology.

[20]  N. Nikolaidis,et al.  Structure-Function Analysis of the Bacterial Expansin EXLX1* , 2011, The Journal of Biological Chemistry.

[21]  E. Bayer,et al.  The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. , 2010, FEMS microbiology letters.

[22]  E. Bayer,et al.  Interplay between Clostridium thermocellum Family 48 and Family 9 Cellulases in Cellulosomal versus Noncellulosomal States , 2010, Applied and Environmental Microbiology.

[23]  B. Henrissat,et al.  Modulation of cellulosome composition in Clostridium cellulolyticum: Adaptation to the polysaccharide environment revealed by proteomic and carbohydrate‐active enzyme analyses , 2010, Proteomics.

[24]  Shen-Long Tsai,et al.  Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production , 2009, Applied and Environmental Microbiology.

[25]  Nagiza F. Samatova,et al.  Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis , 2009, PloS one.

[26]  K. Kim,et al.  Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose , 2009, Biotechnology and bioengineering.

[27]  B. Joris,et al.  Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization , 2008, Proceedings of the National Academy of Sciences.

[28]  K. Kim,et al.  A novel cellulase activity enhancing protein from bacillus subtilis, a functional homolog of a plant expansin , 2008 .

[29]  O. Singh,et al.  Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives , 2008, Journal of Industrial Microbiology & Biotechnology.

[30]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[31]  V. Martin,et al.  Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis , 2007, Journal of bacteriology.

[32]  Josef Kellermann,et al.  Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes , 2005, Proteomics.

[33]  A. Demain,et al.  Cellulase, Clostridia, and Ethanol , 2005, Microbiology and Molecular Biology Reviews.

[34]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[35]  E. Bayer,et al.  Degradation of Cellulose Substrates by Cellulosome Chimeras , 2002, The Journal of Biological Chemistry.

[36]  Daniel J. Cosgrove,et al.  Loosening of plant cell walls by expansins , 2000, Nature.

[37]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[38]  E. Bayer,et al.  Expression, purification and subunit‐binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome , 1995, FEBS letters.

[39]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[40]  E. Bayer,et al.  Affinity digestion for the near-total recovery of purified cellulosome from Clostridium thermocellum , 1992 .

[41]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[42]  Lily Eurwilaichitr,et al.  Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates. , 2015, Bioresource technology.

[43]  Raphael Lamed,et al.  From cellulosomes to cellulosomics. , 2008, Chemical record.