Information communicated by entangled photon pairs

A key goal of quantum communication is to determine the maximum number of bits shared between two quantum systems. An important example of this is in entanglement-based quantum key distribution (QKD) schemes. A realistic treatment of this general communication problem must take account of the nonideal nature of the entanglement source and the detectors. The aim of this paper is to give such a treatment. We obtain analytic expression for the mutual information in terms of experimental parameters. The results are applied to communication schemes that rely on spontaneous parametric down conversion to generate entangled photons. We show that our results can be applied to tasks such as calculating the optimal rate of bits per photon in high-dimensional time-bin-encoded QKD protocols (prior to privacy amplification). A key finding for such protocols is that, by using realistic experimental parameters, one can obtain over 10 bits per photon. We also show how our results can be applied to characterize the capacity of a fiber array and to quantify entanglement using mutual information.

[1]  J. P. Torres,et al.  Quantum spiral bandwidth of entangled two-photon states , 2003 .

[3]  B. Sanders,et al.  Long-distance practical quantum key distribution by entanglement swapping. , 2010, Optics express.

[4]  Michael J. W. Hall,et al.  QUANTUM INFORMATION AND CORRELATION BOUNDS , 1997 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Retrodictive fidelities for pure state postselectors , 2006, quant-ph/0608113.

[7]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[8]  S. Barnett,et al.  Quantum correlations in position, momentum, and intermediate bases for a full optical field of view , 2012 .

[9]  S. Franke-Arnold,et al.  Angular EPR paradox , 2004, quant-ph/0506240.

[10]  Barnett,et al.  Entropy as a measure of quantum optical correlation. , 1989, Physical review. A, General physics.

[11]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[12]  Wolfgang Tittel,et al.  Time-bin entangled qubits for quantum communication created by femtosecond pulses , 2002 .

[13]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[14]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[15]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[16]  H. Lo,et al.  Quantum key distribution with entangled photon sources , 2007, quant-ph/0703122.

[17]  G. M. Nikolopoulos,et al.  Security bound of two-basis quantum-key-distribution protocols using qudits (10 pages) , 2005, quant-ph/0507221.

[18]  Maximum observable correlation for a bipartite quantum system , 2006, quant-ph/0609076.

[19]  B. Saleh,et al.  Reduction of quantum noise in transmittance estimation using photon-correlated beams , 1999 .

[20]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[21]  Stephen M. Barnett,et al.  Full characterization of the quantum spiral bandwidth of entangled biphotons , 2010, 1011.5970.

[22]  Teich,et al.  Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[24]  Barnett,et al.  Information theory, squeezing, and quantum correlations. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  Michael Priestley,et al.  Proceedings of IEEE Professional Communication Society International Professional Communication Conference and Proceedings of the 18th Annual ACM International Conference on Computer Documentation: Technology & Teamwork, Cambridge, Massachusetts, USA, September 24-27, 2000 , 2000, SIGDOC.

[26]  C. Kurtsiefer,et al.  Absolute rates of Spontaneous Parametric Down Conversion into a single transverse Gaussian mode , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[27]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  Simon J. D. Phoenix,et al.  Three-state quantum cryptography , 2000 .

[29]  Dexter Kozen,et al.  New , 2020, MFPS.

[30]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[31]  Jonathan Leach,et al.  Single-photon position to time multiplexing using a fiber array. , 2011, Optics express.

[32]  Timothy C. Ralph,et al.  Modelling photo-detectors in quantum optics , 2005, quant-ph/0511099.

[33]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[34]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[35]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[36]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[37]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[38]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[39]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Wolfgang Tittel,et al.  Tailoring photonic entanglement in high-dimensional Hilbert spaces , 2003, quant-ph/0309058.

[41]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[42]  加藤 賢 E-Print の進化 , 2000 .

[43]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[44]  A. Yao Angular momentum decomposition of entangled photons with an arbitrary pump , 2010, 1012.5021.

[45]  E. Jeffrey,et al.  Photon arrival time quantum random number generation , 2009 .

[46]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[47]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[48]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[49]  W. Marsden I and J , 2012 .

[50]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[51]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.