European Summer Meeting of the Association for Symbolic Logic: Aachen, 1983

S OF PAPERS 261 R. BONNET, Sur les algebres de Boole d'intervalles. Rappelons qu'historiquement, les algebres de Boole interviennent en logique (Lindenbaum-Tarski), theorie de la mesure, et plus recemment en theorie des ensembles et en topologie. Dans cet article, on va exposer quelques aspects relatifs aux algebres de Boole d'intervalles. On commence (?0) par expliciter la duality "algebres de Boole-espaces Booleiens" (M. Pouzet, voir aussi Ch. Charretton et M. Pouzet); il est a noter que l'espace est "concret" et que l'on n'utilise pas l'axiome de l'ultrafiltre et donc pas l'axiome du choix. Le ?1 sera consacre aux algebres de Boole denombrables (theoremes de Mostowski-Tarski; Mayer-Pierce, Ketonen) et un resultat (non encore public) concernant le theoreme de Tarski sur l'equivalence elementaire, dans le cas des algebres denombrables. Enfin dans le ?2, on developpera les algebres retractives (Rubin), les types d'isomorphie (en utilisant les idees de Shelah) et les algebres rigides. BRANISLAV R. BORICIC, On an intermediate propositional system. By giving a positive solution to the problem posed in [6] we have shown (v. [1]) that the sequence of intermediate propositional systems NLCn (n ? 1) contains three different systems only: the classical propositional calculus NLC1, Dummett's system NLC2 (v. [3]) and the system NLC3. We will consider the completeness, separability and decidability of the last system. Note that NLC3 can be axiomatized by adding the formula C3: ((A -* B) -* D) -*(((B -* C) -* D) (((C A) D) D)) as an axiom to the Heyting propositional calculus H. IH + C3 is the positive implicational calculus (v. [2]) extended by C3. THEOREM 1. IH + C3 is characterised by all Kripke frames (X, R) (i.e. partially ordered sets) with the

[1]  John R. Steel,et al.  On Vaught's conjecture , 1978 .

[2]  Anita Wasilewska On the Gentzen Type Formalizations , 1980, Math. Log. Q..

[3]  Steven Garavaglia Relative strength of Malitz quantifiers , 1978, Notre Dame J. Formal Log..

[4]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[5]  Solomon Feferman,et al.  1 — Consistency and faithful interpretations , 1962 .

[6]  Karel Hrbacek,et al.  Axiomatic foundations for Nonstandard Analysis , 1978 .

[7]  G. Boolos The Unprovability of Consistency: An Essay in Modal Logic , 1979 .

[8]  Albert Visser,et al.  A propositional logic with explicit fixed points , 1981 .

[9]  Chandler Davis Modal Operators, Equivalence Relations, and Projective Algebras , 1954 .

[10]  Lou van den Dries Some model theory and number theory for models of weak systems of arithmetic , 1980 .

[11]  S. G. Simpson,et al.  The use of abstract language in elementary metamathematics: Some pedagogic examples , 1975 .

[12]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[13]  J. Malitz,et al.  Compact extensions of L(Q) (part 1a) , 1977 .

[14]  W. Blok The lattice of varieties of modal algebras is not strongly atomic , 1980 .

[15]  Douglas E. Miller The invariant Π⁰_{} separation principle , 1978 .

[16]  R. Harrop On the existence of finite models and decision procedures for propositional calculi , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  C. C. Chang Modal model theory , 1973 .

[18]  Vítězslav Švejdar Degrees of interpretability , 1978 .

[19]  Maria Teresa Pazienza,et al.  POL: An interactive system to analyze large data sets , 1979 .

[20]  C. St. J. A. Nash-Williams,et al.  On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Saul A. Kripke An extension of a theorem of Gaifman-Hales-Solvay , 1967 .

[22]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[23]  Jeff B. Paris Patterns of Indiscernibles , 1974 .

[24]  R. Vaught Invariant sets in topology and logic , 1974 .

[25]  S. S. Goncharov,et al.  Autostability of models and Abelian groups , 1980 .

[26]  Hans Dobbertin,et al.  On Vaught's criterion for isomorphisms of countable Boolean algebras , 1982 .

[27]  Petr Štěpánek Boolean algebras with no rigid or homogeneous factors , 1982 .

[28]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[29]  Paul R. Halmos,et al.  Algebraic logic, I. Monadic boolean algebras , 1956 .

[30]  Per Lindström On certain lattices of degrees of interpretability , 1984, Notre Dame J. Formal Log..

[31]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[32]  L. Kirby,et al.  Indicators, recursive saturation and expandability , 1981 .

[33]  Yiannis N. Moschovakis,et al.  Notes on the Theory of Scales , 1978 .

[34]  István Juhász,et al.  On hereditarily α-Lindelöf and α-separable spaces, II , 1974 .

[35]  G. Boolos,et al.  Self-Reference and Modal Logic , 1985 .

[36]  Alexander Lubotzky,et al.  Embedding covers and the theory of frobenius fields , 1982 .

[37]  G. Asser Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität , 1955 .

[38]  A. Monteiro La semi-simplicité des algèbres de Boole topologiques et les systèmes déductifs , 1971 .

[39]  M. Wajsberg,et al.  Ein erweiterter Klassenkalkül , 1933 .

[40]  Klaus Weihrauch,et al.  Admissible Representations of Effective CPO's , 1983, Theor. Comput. Sci..

[41]  Lou van den Dries,et al.  Decidability and undecidability theorems for PAC-fields , 1981 .