Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries

We adapt a previously developed lithium-ion mathematical model to treat multiple types of active materials in a single electrode; our model treats both direct (galvanostatic) and alternating (impedance) currents. We compare our simulations to experimental data from coin cells built with two positive-electrode materials (compositions based on Li y Ni 0.80 Co 0.15 Al 0.05 O 2 and Li y Mn 2 O 4 ) mixed in five different molar ratios and develop a model parameter set that qualitatively matches both the galvanostatic and impedance data. We found that to match the behavior of the high rate discharge curves and the impedance data (which showed a similar width of the positive-electrode kinetic arc for any composition containing Li y Mn 2 O 4 ), multiple types of electronic connections between the active material and the conductive matrix were required. Our experiments showed that at high powers the specific energy from an electrode with pure Li y Mn 2 O 4 exceeded that from an electrode with pure Li y Ni 0.80 Co 0.15 Al 0.05 O 2 , while at low specific powers the Li y Ni 0.80 Co 0.15 Al 0.05 O 2 electrode had a higher specific energy. Mixing these active materials combined power and energy characteristics. We discuss other applications in which a mixed active-material electrode may be beneficial. For example, combining a sloped-potential system with a flat-potential system may assist in electrode state-of-charge determination.

[1]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[2]  Robert Kostecki,et al.  Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries , 2007 .

[3]  Venkat Srinivasan,et al.  Optimization of Lithium Titanate Electrodes for High-Power Cells , 2006 .

[4]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[5]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[6]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[7]  Yang‐Kook Sun,et al.  Improvement of cycling performance of Li1.1Mn1.9O4 at 60 °C by NiO addition for Li-ion secondary batteries , 2006 .

[8]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[9]  Karen E. Thomas-Alyea Modeling Resistive-Reactant and Phase-Change Materials in Battery Electrodes , 2008 .

[10]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[11]  John Newman,et al.  Measuring the Salt Activity Coefficient in Lithium-Battery Electrolytes , 2008 .

[12]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .

[13]  Hyun-Soo Kim,et al.  A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery , 2006 .

[14]  J. Newman,et al.  Modeling Side Reactions and Nonisothermal Effects in Nickel Metal-Hydride Batteries , 2008 .

[15]  Andrew M. Minor,et al.  Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells , 2007 .

[16]  Andrew M. Minor,et al.  Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode , 2008 .

[17]  S. Fujitani,et al.  Layered Cathode for Improving Safety of Li-Ion Batteries , 2007 .

[18]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[19]  Parthasarathy M. Gomadam,et al.  Theoretical Analysis for Obtaining Physical Properties of Composite Electrodes , 2003 .

[20]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[21]  Craig L. Schmidt,et al.  Modeling Li ∕ CF x -SVO Hybrid-Cathode Batteries , 2007 .

[22]  A. Manthiram,et al.  Suppression of Mn Dissolution in Spinel Cathodes by Trapping the Protons within Layered Oxide Cathodes , 2007 .

[23]  K. Zaghib,et al.  Dual active material composite cathode structures for Li-ion batteries , 2008 .

[24]  B. Scrosati,et al.  An AC Impedance Spectroscopic Study of LixCoO2 at Different Temperatures , 2002 .

[25]  Tatsuji Numata,et al.  Advantages of blending LiNi0.8Co0.2O2 into Li1+xMn2−xO4 cathodes , 2001 .

[26]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[27]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[28]  Dennis W. Dees,et al.  Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 , 2008 .

[29]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[30]  K. Swider-Lyons,et al.  Li-Ion Capacity Enhancement in Composite Blends of LiCoO2 and Li2RuO3 , 2005 .

[31]  Arumugam Manthiram,et al.  High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries , 2009 .

[32]  K. Nahm,et al.  Electrochemical studies on cathode blends of LiMn2O4 and Li[Li1/15Ni1/5Co2/5Mn1/3O2] , 2008 .

[33]  Marc Doyle,et al.  Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries , 2000 .

[34]  Chisu Kim,et al.  Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2 , 2005 .

[35]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[36]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[37]  Dennis W. Dees,et al.  Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode , 2009 .