Combining Multivariate Volatility Forecasts: An Economic-Based Approach

We devise a novel approach to combine predictions of high-dimensional conditional covariance matrices using economic criteria based on portfolio selection. The combination scheme takes into account not only the portfolio objective function but also the portfolio characteristics in order to define the mixing weights. Three important advantages are that i) it does not require a proxy for the latent conditional covariance matrix, ii) it does not require optimization of the combination weights, and iii) can be calibrated in order to adjust the influence of the best performing models. Empirical application involving a data set with 50 assets over a 10-year time span shows that the proposed economic-based combinations of multivariate volatility forecasts leads to mean–variance portfolios with higher risk-adjusted performance in terms of Sharpe ratio as well as to minimum variance portfolios with lower risk on an out-of-sample basis with respect to a number of benchmark specifications.

[1]  Ralf Becker,et al.  Selecting volatility forecasting models for portfolio allocation purposes , 2015 .

[2]  Giuseppe Storti,et al.  Model Uncertainty and Forecast Combination in High‐Dimensional Multivariate Volatility Prediction , 2015 .

[3]  Marc S. Paolella,et al.  COMFORT: A Common Market Factor Non-Gaussian Returns Model , 2014 .

[4]  Dukpa Kim Maximum likelihood estimation for vector autoregressions with multivariate stochastic volatility , 2014 .

[5]  André A. P. Santos,et al.  Dynamic Factor Multivariate GARCH Model , 2012, Comput. Stat. Data Anal..

[6]  Manabu Asai Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range: Heterogeneous Asymmetric DCC with Return and Range , 2013 .

[7]  Lutz Kilian,et al.  Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach , 2013 .

[8]  A. Timmermann,et al.  Combining expert forecasts: Can anything beat the simple average? , 2013 .

[9]  T. Teräsvirta,et al.  Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach , 2015 .

[10]  N. Shephard,et al.  Multivariate Rotated ARCH Models , 2013 .

[11]  Peter Reinhard Hansen,et al.  REALIZED BETA GARCH: A MULTIVARIATE GARCH MODEL WITH REALIZED MEASURES OF VOLATILITY , 2012 .

[12]  Christian M. Hafner,et al.  On the estimation of dynamic conditional correlation models , 2012, Comput. Stat. Data Anal..

[13]  Manabu Asai,et al.  Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range , 2012 .

[14]  F. Audrino,et al.  HAR Modeling for Realized Volatility Forecasting , 2012 .

[15]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[16]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[17]  R. Engle,et al.  The Factor-Spline-GARCH Model for High- and Low-Frequency Correlations , 2011 .

[18]  Kenneth F. Wallis,et al.  Combining forecasts – forty years later , 2011 .

[19]  Roger G. Clarke,et al.  Minimum-Variance Portfolio Composition , 2010, The Journal of Portfolio Management.

[20]  R HaRind,et al.  Minimum-Variance Portfolio Composition , 2011 .

[21]  YUKUN ZHANG Comparing univariate and multivariate models to forecast portfolio value-at-risk , 2011 .

[22]  D. Thornton,et al.  Out-of-Sample Predictions of Bond Excess Returns and Forward Rates: An Asset Allocation Perspective , 2010 .

[23]  Chris Kirby,et al.  It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification , 2010, Journal of Financial and Quantitative Analysis.

[24]  S. Laurent,et al.  On the Forecasting Accuracy of Multivariate GARCH Models , 2010 .

[25]  Turan G. Bali,et al.  The intertemporal capital asset pricing model with dynamic conditional correlations , 2010 .

[26]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[27]  Michael W. Brandt Portfolio Choice Problems , 2010 .

[28]  L. Bauwens,et al.  VOLATILITY MODELS AND THEIR APPLICATIONS , 2010 .

[29]  Jeroen V.K. Rombouts,et al.  Série Scientifique Scientific Series on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models , 2022 .

[30]  F. Nogales,et al.  Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk , 2009 .

[31]  G. Koop,et al.  Forecasting In ation Using Dynamic Model Averaging , 2009 .

[32]  P. Franses,et al.  A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets , 2009 .

[33]  Michael P. Clements,et al.  Forecast Combination and Encompassing , 2009 .

[34]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[35]  Kevin Sheppard,et al.  Optimal combinations of realised volatility estimators , 2009 .

[36]  Qianqiu Liu,et al.  On Portfolio Optimization: How and When Do We Benefit from High-Frequency Data? , 2009 .

[37]  Kun Zhang,et al.  Efficient factor GARCH models and factor-DCC models , 2009 .

[38]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[39]  Monica Billio,et al.  A Generalized Dynamic Conditional Correlation Model for Portfolio Risk Evaluation , 2006, Math. Comput. Simul..

[40]  S. Chib,et al.  Multivariate stochastic volatility , 2009 .

[41]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[42]  Roxana Halbleib,et al.  Modelling and Forecasting Multivariate Realized Volatility , 2008 .

[43]  K. French,et al.  Presidential Address: The Cost of Active Investing , 2008 .

[44]  P. Zaffaroni Large‐scale volatility models: theoretical properties of professionals’ practice , 2008 .

[45]  D. Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use? , 2008 .

[46]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[47]  Ralf Becker,et al.  Are combination forecasts of S&P 500 volatility statistically superior? , 2008 .

[48]  M. Hashem Pesaran,et al.  Decision‐Based Methods for Forecast Evaluation , 2007 .

[49]  Piotr Cofta,et al.  The Model of Confidence , 2007 .

[50]  J. Hubbard Minimum-Variance Portfolios in the U.S. Equity Market , 2007 .

[51]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[52]  M. Hashem Pesaran,et al.  Selection of estimation window in the presence of breaks , 2007 .

[53]  A. Timmermann,et al.  Economic Forecasting , 2007 .

[54]  R. Engle,et al.  Evaluating the Specification of Covariance Models for Large Portfolios , 2007 .

[55]  D. Thornton,et al.  The Expectation Hypothesis of the Term Structure of Very Short-Term Rates: Statistical Tests and Economic Value , 2007 .

[56]  Steven Thorley,et al.  Minimum-Variance Portfolios in the U.S. Equity Market , 2006 .

[57]  E. Ghysels,et al.  Structural Breaks in Financial Time Series , 2006 .

[58]  M. McAleer,et al.  Multivariate Stochastic Volatility: A Review , 2006 .

[59]  M. Glickman,et al.  Factor Multivariate Stochastic Volatility via Wishart Processes , 2006 .

[60]  M. Glickman,et al.  Multivariate Stochastic Volatility via Wishart Processes , 2006 .

[61]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[62]  C. Granger,et al.  Forecasting and Decision Theory , 2006 .

[63]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[64]  Riccardo Colacito,et al.  Testing and Valuing Dynamic Correlations for Asset Allocation , 2005 .

[65]  Dick J. C. van Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? , 2005 .

[66]  P. Franses,et al.  Semi-Parametric Modelling of Correlation Dynamics , 2005 .

[67]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[68]  T. Evgeniou,et al.  To combine or not to combine: selecting among forecasts and their combinations , 2005 .

[69]  Allan Timmermann,et al.  Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss? , 2008 .

[70]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[71]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[72]  Yuhong Yang COMBINING FORECASTING PROCEDURES: SOME THEORETICAL RESULTS , 2004, Econometric Theory.

[73]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[74]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[75]  R. Engle,et al.  Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns , 2003, SSRN Electronic Journal.

[76]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[77]  Yufeng Han,et al.  Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model , 2005 .

[78]  Roy van der Weide,et al.  GO-GARCH: a multivariate generalized orthogonal GARCH model , 2002 .

[79]  M. Martens Measuring and Forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data , 2002 .

[80]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[81]  W. Marquering,et al.  Modeling the Conditional Covariance between Stock and Bond Returns: A Multivariate GARCH Approach , 2002 .

[82]  Chris Kirby,et al.  The Economic Value of Volatility Timing Using 'Realized' Volatility , 2001 .

[83]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[84]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[85]  Derek W. Bunn,et al.  Review of guidelines for the use of combined forecasts , 2000, Eur. J. Oper. Res..

[86]  C. Granger,et al.  Economic and Statistical Measures of Forecast Accuracy , 1999 .

[87]  H. Uhlig Bayesian vector autoregressions with stochastic volatility , 1997 .

[88]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[89]  Dean P. Foster,et al.  Continuous Record Asymptotics for Rolling Sample Variance Estimators , 1994 .

[90]  H. Uhlig On singular Wishart and singular multivariate beta distributions , 1994 .

[91]  Arnold Zellner,et al.  To combine or not to combine? Issues of combining forecasts , 1992 .

[92]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[93]  C. Granger Invited review combining forecasts—twenty years later , 1989 .

[94]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[95]  Francis X. Diebold,et al.  Forecast combination and encompassing: Reconciling two divergent literatures , 1989 .

[96]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[97]  Heejoon Kang Unstable Weights in the Combination of Forecasts , 1986 .

[98]  F. Diebold,et al.  Structural change and the combination of forecasts , 1986 .

[99]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[100]  E. Robert Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models , 2022 .