Characterization of the synchronization languages for PV systems

A basic question in the area of asynchronous computation is: Given a synchronization problem, what synchronization primitives are needed for a solution? This paper is directed toward answering this question by characterizing the "behavior" of synchronization systems incorporating PV, PV multiple, PV chunk and PV general synchronization primitives.

[1]  Richard J. Lipton,et al.  On synchronization primitive systems , 1973 .

[2]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[3]  Richard J. Lipton,et al.  Evaluation Criteria for Process Synchronization. , 1975 .

[4]  Axel van Lamsweerde,et al.  On an Extension of Dijkstra's Semaphore Primitives , 1972, Inf. Process. Lett..

[5]  Yechezkel Zalcstein,et al.  A Graph-Theoretic Characterization of the PV_chunk Class of Synchronizing Primitives , 1977, SIAM J. Comput..

[6]  Vinton Gray Cerf,et al.  Multiprocessors, semaphores, and a graph model of computation , 1972 .

[7]  Calvin C. Elgot,et al.  Truth functions realizable by single threshold organs , 1961, SWCT.

[8]  Seymour Ginsburg,et al.  Mappings of languages by two-tape devices , 1964, JACM.

[9]  Alfred V. Aho,et al.  Bounds on the Complexity of the Longest Common Subsequence Problem , 1976, J. ACM.

[10]  David Lorge Parnas,et al.  Concurrent control with “readers” and “writers” , 1971, CACM.

[11]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[12]  Richard J. Lipton,et al.  A Comparative Study of Models of Parallel Computation , 1974, SWAT.

[13]  Richard J. Lipton Limitations of synchronization primitives with conditional branching and global variables , 1974, STOC '74.

[14]  Alfred V. Aho,et al.  Bounds on the Complexity of the Longest Common Subsequence Problem , 1974, SWAT.