Enhanced n-body annihilation of dark matter and its indirect signatures
暂无分享,去创建一个
[1] H. Murayama,et al. Strongly interacting massive particles through the axion portal , 2018, Physical Review D.
[2] E. Braaten,et al. Production of dark-matter bound states in the early universe by three-body recombination , 2018, Journal of High Energy Physics.
[3] M. Lisanti,et al. Search for dark matter annihilation in the Milky Way halo , 2018, Physical Review D.
[4] T. Slatyer,et al. Implications of a 21-cm signal for dark matter annihilation and decay , 2018, Physical Review D.
[5] Alan E. E. Rogers,et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.
[6] F. V. D. Bosch,et al. Dark Matter Substructure in Numerical Simulations: A Tale of Discreteness Noise, Runaway Instabilities, and Artificial Disruption , 2018, 1801.05427.
[7] A. Boyarsky,et al. Constraining self-interacting dark matter with scaling laws of observed halo surface densities , 2017, 1712.06602.
[8] A. Erickcek,et al. Are ultracompact minihalos really ultracompact , 2017, 1712.05421.
[9] C. Byrnes,et al. 3D simulations with boosted primordial power spectra and ultracompact minihalos , 2017, 1710.02055.
[10] B. Safdi,et al. Search for Dark Matter Annihilation in Galaxy Groups. , 2017, Physical review letters.
[11] Regina Caputo,et al. Fermipy: An open-source Python package for analysis of Fermi-LAT Data , 2017, 1707.09551.
[12] H. Murayama,et al. Vector SIMP dark matter , 2017, 1707.01434.
[13] M. Perelstein,et al. Phenomenology of ELDER dark matter , 2017, 1706.05381.
[14] H. Murayama,et al. Dark spectroscopy at lepton colliders , 2017, 1706.05008.
[15] S. Tulin,et al. Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.
[16] K. Tsumura,et al. A radiative neutrino mass model with SIMP dark matter , 2017, 1705.00592.
[17] Matteo Viel,et al. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.
[18] Hyun Min Lee,et al. Cosmic abundances of SIMP dark matter , 2017, Journal of High Energy Physics.
[19] T. Slatyer,et al. Enabling forbidden dark matter , 2017, 1702.07716.
[20] J. Pradler,et al. Simply split strongly interacting massive particles , 2017 .
[21] Trystyn A. M. Berg,et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-$\alpha$ forest data , 2017, 1702.01764.
[22] K. Boddy,et al. Sommerfeld-enhanced J -factors for dwarf spheroidal galaxies , 2017, 1702.00408.
[23] D. Wittman,et al. The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters , 2017, The Astrophysical Journal.
[24] T. Ray,et al. Light dark matter through assisted annihilation , 2016, 1612.09074.
[25] D. Gerdes,et al. SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT , 2016, 1611.03184.
[26] T. Slatyer,et al. General constraints on dark matter decay from the cosmic microwave background , 2016, 1610.06933.
[27] J. Beacom,et al. Almost closing the νMSM sterile neutrino dark matter window with NuSTAR , 2016, 1609.00667.
[28] M. Viel,et al. XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter , 2016, 1607.08776.
[29] T. Slatyer,et al. Contributions to cosmic reionization from dark matter annihilation and decay , 2016, 1604.02457.
[30] T. Slatyer,et al. Self-consistent calculation of the Sommerfeld enhancement , 2016, 1603.01383.
[31] D. Pappadopulo,et al. Dark matter freeze-out in a nonrelativistic sector , 2016 .
[32] Hyun Min Lee,et al. Resonant SIMP dark matter , 2016, 1601.03566.
[33] H. Murayama,et al. SIMP spectroscopy , 2015, 1512.07917.
[34] Maxim Perelstein,et al. Elastically Decoupling Dark Matter. , 2015, Physical review letters.
[35] G. Krnjaic,et al. Probing light thermal dark matter with a Higgs portal mediator , 2015, 1512.04119.
[36] M. Hansen,et al. SIMP model at NNLO in chiral perturbation theory , 2015, 1507.01590.
[37] T. Slatyer. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections , 2015, 1506.03812.
[38] T. Slatyer. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.
[39] Hyun Min Lee,et al. SIMP dark matter with gauged Z3 symmetry , 2015, 1505.00960.
[40] Hyun Min Lee,et al. Communication with SIMP dark mesons via Z'-portal , 2015, 1504.00745.
[41] R. Rosenfeld,et al. WIMP and SIMP dark matter from the spontaneous breaking of a global group , 2015, 1501.01973.
[42] D. Spergel,et al. SUPERMASSIVE BLACK HOLES FROM ULTRA-STRONGLY SELF-INTERACTING DARK MATTER , 2014, 1501.00017.
[43] K. Mitsuda,et al. An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku , 2014, 1412.1869.
[44] F. Prada,et al. MultiDark simulations: the story of dark matter halo concentrations and density profiles , 2014, 1411.4001.
[45] J. Wacker,et al. Mechanism for thermal relic dark matter of strongly interacting massive particles. , 2014, Physical review letters.
[46] A. Boyarsky,et al. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.
[47] M. Markevitch,et al. DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.
[48] Stanford,et al. The flattening of the concentration–mass relation towards low halo masses and its implications for the annihilation signal boost , 2013, 1312.1729.
[49] Ryan E. Keeley,et al. Tying dark matter to baryons with self-interactions. , 2013, Physical review letters.
[50] MIT,et al. Current dark matter annihilation constraints from CMB and low-redshift data , 2013, 1310.3815.
[51] J. Beacom,et al. Resolving small-scale dark matter structures using multisource indirect detection , 2013, 1310.1915.
[52] K. Mack. Known Unknowns of Dark Matter Annihilation over Cosmic Time , 2013, 1309.7783.
[53] R. Essig,et al. Constraining light dark matter with diffuse X-ray and gamma-ray observations , 2013, 1309.4091.
[54] O. Mena,et al. Constraining dark matter late-time energy injection: decays and p-wave annihilations , 2013, 1308.2578.
[55] Alexander L. Gaunt,et al. Stability of a unitary Bose gas. , 2013, Physical review letters.
[56] M. Viel,et al. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.
[57] P. Salucci,et al. The Dark Matter halo of the Milky Way, AD 2013 , 2013, 1304.5127.
[58] R. Smith,et al. Halo mass function and the free streaming scale , 2013, 1303.0839.
[59] William W. Zhang,et al. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.
[60] C. Salomon,et al. Lifetime of the Bose gas with resonant interactions. , 2012, Physical review letters.
[61] T. Slatyer. Energy Injection And Absorption In The Cosmic Dark Ages , 2012, 1211.0283.
[62] K. Benabed,et al. Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.
[63] N. Yoshida,et al. The nature of dark matter from the global high-redshift H i 21 cm signal , 2012, 1209.2120.
[64] D. Hooper,et al. Dark Forces and Light Dark Matter , 2012, 1206.2929.
[65] T. Bringmann,et al. Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos , 2011, 1110.2484.
[66] D. Finkbeiner,et al. Searching for dark matter in the CMB: A compact parametrization of energy injection from new physics , 2011, 1109.6322.
[67] Joel R. Primack,et al. Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.
[68] Instituto de Astrof'isica de Canarias,et al. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters? , 2011, 1104.3530.
[69] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.
[70] Dong Zhang. Impact of primordial ultracompact minihaloes on the intergalactic medium and first structure formation , 2010, 1011.1935.
[71] Caltech,et al. Detection of extended He II reionization in the temperature evolution of the intergalactic medium , 2010, 1008.2622.
[72] S. White,et al. The statistics of the subhalo abundance of dark matter haloes , 2010, 1006.2882.
[73] W. Sargent,et al. A first direct measurement of the intergalactic medium temperature around a quasar at z = 6 , 2010, 1001.3415.
[74] Durham,et al. Secondary infall and the pseudo-phase-space density profiles of cold dark matter haloes , 2010, 1001.2310.
[75] C. Giocoli,et al. The substructure hierarchy in dark matter haloes , 2009, 0911.0436.
[76] A. Gould,et al. A NEW PROBE OF DARK MATTER AND HIGH-ENERGY UNIVERSE USING MICROLENSING , 2009, 0908.0735.
[77] R. Mohayaee,et al. Caustics in growing cold dark matter haloes , 2009, 0906.4341.
[78] F. Iocco,et al. CMB constraints on dark matter models with large annihilation cross section , 2009, 0905.0003.
[79] S. T. Rittenhouse,et al. General theoretical description of N-body recombination. , 2009, Physical review letters.
[80] Takamitsu Miyaji,et al. THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.
[81] H. Murayama,et al. Breit-Wigner Enhancement of Dark Matter Annihilation , 2008, 0812.0072.
[82] S. Kay,et al. Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.
[83] R. Terrier,et al. INTEGRAL SPI All-Sky View in Soft Gamma Rays: A Study of Point-Source and Galactic Diffuse Emission , 2008, 0801.2086.
[84] J. Ostriker,et al. Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.
[85] A. Strumia,et al. Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.
[86] M. Ricotti. Bondi Accretion in the Early Universe , 2007, 0706.0864.
[87] J. Comerford,et al. The observed concentration–mass relation for galaxy clusters , 2007, astro-ph/0703126.
[88] Ryuichi Fujimoto,et al. The X-Ray Observatory Suzaku , 2007 .
[89] E. Braaten,et al. Efimov physics in cold atoms , 2006, cond-mat/0612123.
[90] J. Ostriker,et al. Growth of Structure Seeded by Primordial Black Holes , 2006, astro-ph/0608642.
[91] A. Helmi,et al. The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.
[92] A. Green,et al. The first WIMPy halos , 2005, astro-ph/0503387.
[93] J. Hisano,et al. Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center , 2004, hep-ph/0412403.
[94] Eric Braaten,et al. Universality in few‐body systems with large scattering length , 2004, nucl-th/0502080.
[95] C. Greene,et al. A revised formula for 3-body recombination that cannot exceed the unitarity limit , 2004 .
[96] O. Reimer,et al. Diffuse Galactic Continuum Gamma Rays: A Model Compatible with EGRET Data and Cosmic-Ray Measurements , 2004, astro-ph/0406254.
[97] Potsdam,et al. The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.
[98] J. Hisano,et al. Explosive dark matter annihilation. , 2003, Physical review letters.
[99] R. Kleiss,et al. Singular cross sections in muon colliders , 2002, hep-ph/0212301.
[100] J. Silk,et al. The clumpiness of cold dark matter: implications for the annihilation signal , 2002, astro-ph/0207299.
[101] M. C. Weisskopf,et al. An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory , 2001, astro-ph/0110308.
[102] R. Davé,et al. Self-Interacting Dark Matter , 2000, astro-ph/0006344.
[103] R. Barkana,et al. Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.
[104] A. Strong,et al. Diffuse galactic continuum gamma rays , 1999, astro-ph/9912102.
[105] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[106] J. Matteson,et al. The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO 1 , 1999, astro-ph/9903492.
[107] D. Syer,et al. Survival of substructure within dark matter haloes , 1997, astro-ph/9712222.
[108] Wayne Hu,et al. Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.
[109] K. Melnikov,et al. Processes with a t-channel singularity in the physical region: finite beam sizes make cross sections finite , 1997 .
[110] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[111] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[112] A. Kashlinsky,et al. Large-scale structure in the Universe , 1991, Nature.
[113] E. Bertschinger. Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .
[114] P. Goldreich,et al. Self-similar gravitational collapse in an expanding universe , 1984 .
[115] S. Tremaine,et al. Dynamical Role of Light Neutral Leptons in Cosmology , 1979 .
[116] D. Heath. The growth of density perturbations in zero pressure Friedmann–Lemaître universes , 1977 .
[117] William H. Press,et al. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .
[118] H. Murayama,et al. Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. , 2015, Physical review letters.
[119] White,et al. The redshift dependence of the structure of massive ΛCDM halos , 2013 .
[120] C. Frenk,et al. The Aquarius Project : the subhalos of galactic halos , 2008 .
[121] P. Gondoin,et al. XMM-Newton observatory. I. The spacecraft and operations , 2001 .
[122] Srinivas Cheenu Kappadath,et al. Measurement of the Cosmic Diffuse Gamma-Ray Spectrum from 800 KEV to 30 Mev , 1998 .
[123] Richard E. Rothschild,et al. The diffuse X-ray background spectrum from 3 to 50 keV. , 1980 .
[124] J. Einasto. On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters , 1965 .