A 16-electrode Fully Integrated and Versatile CMOS Microstimulator Dedicated to Cochlear Implant

[1]  R. Klinke,et al.  A versatile system for the generation and the development of speech coding strategies in cochlear implants , 1998, IEEE Transactions on Biomedical Engineering.

[2]  Filiep Vanpoucke,et al.  Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements , 2004, IEEE Transactions on Biomedical Engineering.

[3]  Wentai Liu,et al.  An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC , 2003, IEEE J. Solid State Circuits.

[4]  Eduard Alarcón,et al.  Mismatch and dynamic modeling of current sources in current-steering CMOS D/A converters: an extended design procedure , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  M. Merzenich,et al.  Strategies to improve electrode positioning and safety in cochlear implants , 1999, IEEE Transactions on Biomedical Engineering.

[6]  S. Shimizu,et al.  Proposal of a new method for narrowing and moving the stimulated region of cochlear implants: animal experiment and numerical analysis , 1999, IEEE Transactions on Biomedical Engineering.

[7]  Maysam Ghovanloo,et al.  A compact large Voltage-compliance high output-impedance programmable current source for implantable microstimulators , 2005, IEEE Transactions on Biomedical Engineering.

[8]  R. Shepherd,et al.  Electrical stimulation of the auditory nerve: direct current measurement in vivo , 1999, IEEE Transactions on Biomedical Engineering.

[9]  W. Liu,et al.  A neuro-stimulus chip with telemetry unit for retinal prosthetic device , 2000, IEEE Journal of Solid-State Circuits.

[10]  Shuenn-Yuh Lee,et al.  An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  J. Weiland,et al.  A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device , 2005, IEEE Journal of Solid-State Circuits.

[12]  C. Toumazou,et al.  A 126-/spl mu/W cochlear chip for a totally implantable system , 2005, IEEE Journal of Solid-State Circuits.

[13]  Maysam Ghovanloo,et al.  A modular 32-site wireless neural stimulation microsystem , 2004 .

[14]  K. Bult,et al.  A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2 , 1998, IEEE J. Solid State Circuits.

[15]  Spiridon D. Likothanassis,et al.  An ontologically principled service-oriented architecture for managing distributed e-government nodes , 2008, J. Netw. Comput. Appl..

[16]  K. O'Sullivan,et al.  A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm/sup 2/ , 2004, IEEE Journal of Solid-State Circuits.

[17]  Michel Steyaert,et al.  A 12-bit intrinsic accuracy high-speed CMOS DAC , 1998, IEEE J. Solid State Circuits.

[18]  M. Sawan,et al.  Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation , 2005, The IEEE/ACS International Conference on Pervasive Services.

[19]  Nigel H. Lovell,et al.  CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry , 2001, IEEE Transactions on Biomedical Engineering.

[20]  C. Toumazou,et al.  Design of a micropower current-mode log-domain analog cochlear implant , 2000 .