Methanofullerene Molecular Scaffolding: Towards C60-substituted poly(triacetylenes) and expanded radialenes, preparation of a C60–C70 hybrid derivative, and a novel macrocyclization reaction

The synthesis of (E)-hex-3-ene-l, 5-diynes and 3-methylidenepenta-1, 4-diynes with pendant methano[60]-fullerene moieties as precursors to C60-substituted poly(triacetylenes) (PTAs, Fig. 1) and expanded radialenes (Fig. 2) is described. The Bingel reaction of diethyl (E)-2, 3-dialkynylbut-2-ene-1, 4-diyl bis(2-bromopropane-dioates) 5 and 6 with two C60 molecules (Scheme 2) afforded the monomeric, silyl-protected PTA precursors 9 and 10 which, however, could not be effectively desilylated (Scheme 4). Also formed during the synthesis of 9 and 10, as well as during the reaction of C60 with thedesilylated analogue 16 (Scheme5), were the macrocyclic products 11, 12, and 17, respectively, resulting from double Bingel addition to one C-sphere. Rigorous analysis revealed that this novel macrocyclization reaction proceeds with complete regio- and diastereoselectivity. The second approach to a suitable PTA monomer attempted N, N′-dicyclohexylcarbodiimide(DCC)-mediated esterification of (E)-2, 3-diethynylbut-2-ene-l, 4-diol (18, Scheme 6) with mono-esterified methanofullerene-dicarboxylic acid 23; however, this synthesis yielded only the corresponding decarboxylated methanofullerene-carboxylic ester 27 (Scheme 7). To prevent decarboxylation, a spacer was inserted between the reacting carboxylic-acid moiety and the methane C-atom in carboxymethyl ethyl 1, 2-methano[60]fullerene-61, 61-dicarboxylate (28, Scheme 8), and DCC-mediated esterification with diol 18 afforded PTA monomer 32 in good yield. The formation of a suitable monomeric precursor 38 to C60-substituted expanded radialenes was achieved in 5 steps starting from dihydroxyacetone (Schemes 9 and 10), with the final step consisting of the DCC-mediated esterification of 28 with 2-[1-ethynyl(prop-2-ynylidene)]propane-1, 3-diol (33). The first mixed C60-C70 fullerene derivative 49, consisting of two methano[60]fullerenes attached to a methano[70]fullerene, was also prepared and fully characterized (Scheme 13). The Cs-symmetrical hybrid compound was obtained by DCC-mediated esterification of bis[2-(2-hydroxy-ethoxy)ethyl] 1, 2-methano[70]fullerene-71, 71-dicarboxylate (46) with an excess of the C60-carboxylic acid 28. The presence of two different fullerenes in the same molecule was reflected by its UV/VIS spectrum, which displayed the characteristic absorption bands of both the C70 and C60 mono-adducts, but at the same time indicated no electronic interaction between the different fullerene moieties. Cyclic voltammetry showed two reversible reduction steps for 49, and comparison with the corresponding C70 and C60 mono-adducts 46 and 30 indicated that the three fullerenes in the composite fullerene compound behave as independent redox centers.

[1]  F. Diederich,et al.  Novel Extended π‐Chromophores Based on Tetraethynylethene. , 1997 .

[2]  F. Diederich,et al.  Regio‐ and Diastereoselective Bisfunctionalization of C60 and Enantioselective Synthesis of a C60 Derivative with a Chiral Addition Pattern , 1996 .

[3]  R. Alder,et al.  In/Out Isomerism. , 1996, Chemical reviews.

[4]  Jean-François Nierengarten,et al.  Regio‐ und diastereoselektive Bisfunktionalisierung von C60‐Fulleren und enantioselektive Synthese eines C60‐Fullerenderivates mit chiralem Additionsmuster , 1996 .

[5]  Tasha G. Collins,et al.  Synthesis of hydroazafullerene C59HN, the parent hydroheterofullerene , 1996, Nature.

[6]  Y. Murata,et al.  Synthesis and properties of dialkyl derivatives of di[60]fullerenylbutadiyne and di[60]fullerenylacetylene: the buckydumbbells , 1996 .

[7]  A. Oliver,et al.  Synthesis of a Variety of Bichromophoric “Ball-and-Chain” Systems Based on Buckminsterfullerene (C60) for the Study of Intramolecular Electron and Energy Transfer Processes , 1996 .

[8]  A. Weber,et al.  Twofold cycloaddition of[60]fullerene to a bifunctional nitrile oxide , 1996 .

[9]  F. Diederich,et al.  Fullerene-acetylene hybrids: Towards a novel class of molecular carbon allotropes , 1996 .

[10]  F. Diederich,et al.  Fullerene‐Acetylene Molecular Scaffolding: Chemistry of 2‐functionalized 1‐ethynylated C60, oxidative homocoupling, hexakis‐adduct formation, and attempted synthesis of C 1242− , 1996 .

[11]  François Diederich,et al.  Covalent Fullerene Chemistry , 1996, Science.

[12]  A. Herrmann,et al.  Chiralität in der Fullerenchemie , 1996 .

[13]  F. Diederich,et al.  Multiple Cyclopropanations of C70. Synthesis and characterization of bis‐, tris‐, and tetrakis‐adducts and chiroptical properties of bis‐adducts with chiral addends, including a recommendation for the configurational description of fullerene derivatives with a chiral addition pattern , 1995 .

[14]  B. Chait,et al.  Synthesis of oxo- and methylene-bridged C60 dimers, the first well-characterized species containing fullerene-fullerene bonds. , 1995 .

[15]  F. Diederich,et al.  Modern acetylene chemistry , 1995 .

[16]  F. Diederich,et al.  A New Family of Chiral Binaphthyl‐Derived Cyclophane Receptors: Complexation of Pyranosides , 1995 .

[17]  F. Diederich,et al.  Electrochemistry of Mono‐ through Hexakis‐adducts of C60 , 1995 .

[18]  S. Anderson,et al.  Eine neue Klasse chiraler, von 1,1′‐Binaphthyl abgeleiteter Cyclophan‐Rezeptoren: Komplexierung von Pyranosiden , 1995 .

[19]  F. Diederich,et al.  Solubilized Derivatives of C195 and C260: The First Members of a New Class of Carbon Allotropes Cn(60 + 5) , 1995 .

[20]  W. Krätschmer,et al.  Synthesis of C120O: A new dimeric [60]fullerene derivative , 1995 .

[21]  P. Seiler,et al.  Lösliche Derivate von C195 und C260: die ersten Verbindungen einer neuen Klasse von Kohlenstoffallotropen Cn(60 + 5) , 1995 .

[22]  F. Diederich,et al.  Acyclic Tetraethynylethene Molecular Scaffolding: Multinanometer‐sized linearly conjugated rods with the poly(triacetylene) backbone and cross‐conjugated expanded dendralenes , 1995 .

[23]  F. Diederich,et al.  Macrocyclic Tetraethynylethene Molecular Scaffolding: Perethynylated aromatic dodecadehydro[18]annulenes, antiaromatic octadehydro[12]annulenes, and expanded radialenes , 1995 .

[24]  R. J. Graham,et al.  Controlled Spacing of 60-Carbon Spheres with 1,4-Cyclohexadienyl Ladders by Pairwise Diels-Alder Cycloaddition to Buckminsterfullerene , 1995 .

[25]  M. Prato,et al.  A New C60 Polymer via Ring-Opening Metathesis Polymerization , 1995 .

[26]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[27]  F. Diederich,et al.  Tetraethynylethenes: Fully cross-conjugated π-electron chromophores and molecular scaffolds for all-carbon networks and carbon-rich nanomaterials , 1995 .

[28]  Stephen R. Wilson,et al.  Methanofullerenes and Methanofulleroids Have Different Electrochemical Behavior at Negative Potentials , 1995 .

[29]  J. H. Malpert,et al.  Conjugate addition reactions of metallated alkyl pyridines. A direct route to 6-substituted pyridones , 1995 .

[30]  D. Astruc,et al.  Single‐Step Six‐Electron Transfer in a Heptanuclear Complex: Isolation of Both Redox Forms , 1995 .

[31]  K. Müllen,et al.  Covalent attachment of various substituents in closest proximity to the C60-core: A broad synthetic approach to stable fullerene derivatives , 1995 .

[32]  D. Astruc,et al.  Einstufiger Sechs-Elektronen-Transfer in einem siebenkernigen Eisenkomplex: Isolierung beider Redoxformen†‡ , 1994 .

[33]  F. Diederich,et al.  Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation† , 1994 .

[34]  M. Iyoda,et al.  Reactions of fullerols and fullerene dimer containing perfluoroalkyl groups with tributyltin hydride , 1994 .

[35]  François Diederich,et al.  Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .

[36]  F. Diederich,et al.  Chemistry of the Higher Fullerenes: Preparative isolation of C76 by HPLC and synthesis, separation, and characterization of Diels-Alder monoadducts of C70 and C76 , 1994 .

[37]  F. Diederich,et al.  Polytriacetylenes: Conjugated polymers with a novel all‐carbon backbone , 1994 .

[38]  A. Hirsch Chemistry of Fullerenes , 1994 .

[39]  Y. Rubin,et al.  Synthesis and characterization of diethynylmethanobuckminsterfullerene, a building block for macrocyclic and polymeric carbon allotropes , 1994 .

[40]  François Diederich,et al.  Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds , 1994, Nature.

[41]  F. Diederich,et al.  Stable Soluble Conjugated Carbon Rods with a Persilylethynylated Polytriacetylene Backbone , 1994 .

[42]  D. Galvão,et al.  Fluorescence and excited‐state structure of conjugated polymers , 1994 .

[43]  F. Diederich,et al.  Stabile, lösliche, konjugierte Kohlenstoffstäbe mit einem persilylethinylierten Polytriacetylen‐Rückgrat , 1994 .

[44]  A. Hirsch,et al.  Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C60 and Di(ethoxycarbonyl)methylene , 1994 .

[45]  F. Diederich,et al.  Expanded Radialenes: A Novel Class of Cross‐Conjugated Macrocycles , 1994 .

[46]  François Diederich,et al.  Expandierte Radialene: Eine neue Klasse kreuzkonjugierter Makrocyclen , 1994 .

[47]  Heinrich R. Karfunkel,et al.  Fullerenchemie in drei Dimensionen: Isolierung von sieben regioisomeren Bisaddukten sowie chiralen Trisaddukten aus C60 und Di(ethoxycarbonyl)methylen , 1994 .

[48]  F. Diederich,et al.  Structures and Chemistry of Methanofullerenes: A Versatile Route into N-[(Methanofullerene)carbonyl]-Substituted Amino Acids , 1993 .

[49]  R. H. Friend,et al.  Efficient light-emitting diodes based on polymers with high electron affinities , 1993, Nature.

[50]  Carsten Bingel,et al.  Cyclopropanierung von Fullerenen , 1993 .

[51]  Bernhard Krätler,et al.  Über Diels-Alder-Reaktionen des C60-Fullerens Vorläufige Mitteilung , 1993 .

[52]  F. Diederich,et al.  Improved purification of C60 and formation of σ- and π-homoaromatic methano-bridged fullerenes by reaction with alkyl diazoacetates , 1993 .

[53]  Hari Singh Nalwa,et al.  Organic Materials for Third‐Order Nonlinear Optics , 1993 .

[54]  A. Hirsch,et al.  Polymer-bound C60 , 1993 .

[55]  Chad A. Mirkin,et al.  Fullerene self-assembly onto (MeO)3Si(CH2)3NH2-modified oxide surfaces , 1993 .

[56]  K. Müllen,et al.  Reaction of Buckminsterfullerene with ortho‐Quinodimethane: a New Access to Stable C60 Derivatives , 1993 .

[57]  Klaus Müllen,et al.  Umsetzung von Buckminsterfulleren C60 mit ortho-Chinodimethan: ein neuer Zugang zu stabilen C60-Derivaten† , 1993 .

[58]  F. Wudl,et al.  A polyester and polyurethane of diphenyl C61: retention of fulleroid properties in a polymer , 1992 .

[59]  F. Diederich,et al.  Novel Cross‐Conjugated Compounds Derived from Tetraethynylethene , 1992 .

[60]  John E. Anthony,et al.  NEUE, VON TETRAETHINYLETHEN ABGELEITETE, KREUZKONJUGIERTE VERBINDUNGEN , 1992 .

[61]  F. Wudl,et al.  Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): two-pearl sections of pearl necklace polymers , 1992 .

[62]  A. Buckley Polymers for Nonlinear Optics , 1992 .

[63]  Lee W. Tutt,et al.  Optical limiting performance of C60 and C70 solutions , 1992, Nature.

[64]  J. Jurayj,et al.  Approaches to the synthesis of endothiopeptides: Synthesis of a thioamide-containing C-terminal bombesin nonapeptide , 1992 .

[65]  F. Wudl,et al.  Lattice structure of the fullerene ferromagnet TDAE–C60 , 1992, Nature.

[66]  F. Wudl,et al.  Organic Molecular Soft Ferromagnetism in a FullereneC60 , 1991, Science.

[67]  R. Kaner,et al.  Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding , 1991, Science.

[68]  Fred Wudl,et al.  Two different fullerenes have the same cyclic voltammetry , 1991 .

[69]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[70]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[71]  C. Tamm,et al.  Synthetic studies directed toward the pseurotins. Part II. Synthesis of related highly functionalized furan-3(2H)-ones† , 1990 .

[72]  R. Schwesinger,et al.  Peralkylated Polyaminophosphazenes— Extremely Strong, Neutral Nitrogen Bases , 1987 .

[73]  R. Schwesinger,et al.  Peralkylierte Polyaminophosphazene ‐extrem starke neutrale Stickstoffbasen , 1987 .

[74]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[75]  L. Alcácer Highly Anisotropic Solids. (Book Reviews: The Physics and Chemistry of Low Dimensional Solids) , 1980 .

[76]  G. Wegner Solid-state polymerization mechanisms , 1977 .

[77]  D. C. Owsley,et al.  Indoles, Benzofurans, Phthalides, and Tolanes via Copper(I) Acetylides , 1966 .

[78]  A. S. Hay Oxidative Coupling of Acetylenes. II1 , 1962 .