Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth

[1]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[2]  J. Weiner,et al.  Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum) , 2013 .

[3]  Martha C. Anderson,et al.  Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery , 2004 .

[4]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[5]  François Jonard,et al.  Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Thomas J. Jackson,et al.  Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery , 2008 .

[7]  Fawwaz T. Ulaby,et al.  Measured microwave emission and scattering in vegetation canopies , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Arnaud Mialon,et al.  Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices , 2016 .

[9]  Thomas J. Jackson,et al.  Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa , 2011 .

[10]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[11]  Dara Entekhabi,et al.  How Many Parameters Can Be Maximally Estimated From a Set of Measurements? , 2015, IEEE Geoscience and Remote Sensing Letters.

[12]  G. P. De Loor,et al.  Dielectric properties of heterogeneous mixtures with a polar constituent , 1964 .

[13]  Thomas J. Jackson,et al.  A dielectric model of the vegetation effects on the microwave emission from soils , 1992, IEEE Trans. Geosci. Remote. Sens..

[14]  Fawwaz T. Ulaby,et al.  Microwave Dielectric Properties of Plant Materials , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Yann Kerr,et al.  Microwave emission of vegetation: sensitivity to leaf characteristics , 1993, IEEE Trans. Geosci. Remote. Sens..

[16]  Jiancheng Shi,et al.  Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E , 2008 .

[17]  Fawwaz Ulaby,et al.  Microwave Dielectric Spectrum of Vegetation - Part II: Dual-Dispersion Model , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[18]  D. Polder,et al.  The effective permeability of mixtures of solids , 1946 .

[19]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[20]  Dara Entekhabi,et al.  Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations , 2016 .

[21]  Thomas J. Jackson,et al.  WindSat Global Soil Moisture Retrieval and Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[22]  T. Jackson,et al.  Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands , 2005 .

[23]  Y. Kerr,et al.  Estimates of surface soil moisture under grass covers using L-band radiometry , 2007 .

[24]  Christian Mätzler,et al.  Microwave (1-100 GHz) dielectric model of leaves , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[26]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[27]  Thomas J. Jackson,et al.  Effective tree scattering and opacity at L-band , 2012 .

[28]  Martha C. Anderson,et al.  Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans , 2004 .

[29]  Yann Kerr,et al.  Inversion of surface parameters from passive microwave measurements over a soybean field , 1993 .

[30]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[31]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[32]  Richard de Jeu,et al.  Analytical derivation of the vegetation optical depth from the microwave polarization difference index , 2005, IEEE Geoscience and Remote Sensing Letters.

[33]  Fawwaz Ulaby,et al.  Microwave Attenuation Properties of Vegetation Canopies , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Christian Mätzler,et al.  Seasonal evolution of microwave radiation from an oat field. , 1990 .

[35]  A. Al Bitar,et al.  Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms , 2017 .

[36]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[37]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[38]  François Jonard,et al.  Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat , 2018, Remote. Sens..