Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al–Zn–Mg–Cu alloys

Abstract Temperature dependence of fatigue crack formation and microstructure-scale growth from constituent particles in 7075-T651 and 7050-T7451 is quantified via load induced fracture surface marker-bands. Larger and more abundant particles in 7075-T651 lead to increased crack formation frequency and decreased life. Crack growth rates are similar between alloys and decreased with decreasing temperature, paralleling crack formation behavior. The temperature dependence is attributed to hydrogen environment embrittlement, but is not sufficiently understood to fully model the observed behavior.

[1]  Robert P. Wei,et al.  Statistical analysis of constituent particles in 7075-T6 aluminum alloy , 2006 .

[2]  Gerd Heber,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651 , 2008 .

[3]  J. Lankford,et al.  Relevance of the small crack problem to lifetime prediction in gas turbines , 1987 .

[4]  Richard P. Gangloff,et al.  Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu , 2010 .

[5]  Ne Ashbaugh,et al.  The role of air in fatigue load interaction , 2003 .

[6]  R. A. Oriani Whitney Award Lecture—1987: Hydrogen—The Versatile Embrittler , 1987 .

[7]  D. G. Harlow,et al.  The effect of constituent particles in aluminum alloys on fatigue damage evolution: Statistical observations , 2010 .

[8]  P. Bowen,et al.  In situ SEM observations of the contrasting effects of an overload on small fatigue crack growth at two different load ratios in 2024-T351 aluminium alloy , 1997 .

[9]  Ian M. Robertson,et al.  The effect of hydrogen on dislocation dynamics , 1999 .

[10]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[11]  Robert P. Wei,et al.  A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles , 1998 .

[12]  S. A. Fawaz Equivalent initial flaw size testing and analysis of transport aircraft skin splices , 2003 .

[13]  Anthony R. Ingraffea,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation , 2011 .

[14]  J. Newman,et al.  Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads , 1984 .

[15]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[16]  C. Sarrazin-Baudoux,et al.  6.05 – Environmentally Assisted Fatigue in the Gaseous Atmosphere , 2003 .

[17]  Richard P. Gangloff,et al.  Environment-exposure-dependent fatigue crack growth kinetics for Al–Cu–Mg/Li , 2007 .

[18]  James C. Newman,et al.  SMALL CRACK GROWTH AND FATIGUE LIFE PREDICTIONS FOR HIGH‐STRENGTH ALUMINIUM ALLOYS: PART I—EXPERIMENTAL AND FRACTURE MECHANICS ANALYSIS , 2011 .

[19]  P. S. Pao,et al.  Environmentally assisted fatigue-crack growth in 7075 and 7050 aluminum alloys , 1985 .

[20]  A. J. Green,et al.  Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy , 2006 .

[21]  S. Spence,et al.  The EIFS distribution for anodized and pre-corroded 7010-T7651 under constant amplitude loading , 2005 .

[22]  F. Dunne,et al.  High– and low–cycle fatigue crack initiation using polycrystal plasticity , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Greg Welsh,et al.  A structural integrity prognosis system , 2009 .

[24]  R. Ibrahim,et al.  The effect of clamping compressive stresses on the fatigue life of Al 7075-T6 bolted plates at different temperatures , 2012 .

[25]  Ming Gao,et al.  Chemical and metallurgical aspects of environmentally assisted fatigue crack growth in 7075-T651 aluminum alloy , 1988 .

[26]  Richard P. Gangloff,et al.  Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr , 2008 .

[27]  N. Dowling Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue , 1993 .

[28]  B. Hillberry,et al.  A model of initial flaw sizes in aluminum alloys , 2001 .

[29]  Mark F. Horstemeyer,et al.  Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy , 2009 .

[30]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[31]  J. Papazian,et al.  Observations of fatigue crack initiation in 7075-T651 , 2010 .

[32]  R. Sunder Fatigue as a process of cyclic brittle microfracture , 2005 .

[33]  James M. Larsen,et al.  Effect of initiation feature on microstructure-scale fatigue crack propagation in Al–Zn–Mg–Cu , 2012 .

[34]  Russell Wanhill,et al.  Typical fatigue-initiating discontinuities in metallic aircraft structures , 2012 .

[35]  P. R. Wiederhold Water Vapor Measurement: Methods and Instrumentation , 1997 .

[36]  R. Wei Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry , 2010 .

[37]  R. Gangloff Critical Issues in Hydrogen Assisted Cracking of Structural Alloys , 2006 .

[38]  R. P. Wei Environmental considerations for fatigue cracking , 2002 .

[39]  Howard E. Boyer,et al.  Atlas of Fatigue Curves , 1986 .

[40]  C. Sarrazin-Baudoux,et al.  Fatigue crack propagation in an aluminium alloy at 223 K , 2005 .

[41]  M. Horstemeyer,et al.  Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy , 2007 .

[42]  A. Maniatty,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 , 2010 .

[43]  James M. Larsen,et al.  Driving forces for localized corrosion‐to‐fatigue crack transition in Al–Zn–Mg–Cu , 2011 .

[44]  Rj Bucci,et al.  Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests , 2004 .

[45]  Richard P. Gangloff,et al.  Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu , 2009 .

[46]  S. Agnew,et al.  Fatigue crack surface crystallography near crack initiating particle clusters in precipitation hardened legacy and modern Al–Zn–Mg–Cu alloys , 2011 .

[47]  Peter J. Laz,et al.  Fatigue life prediction from inclusion initiated cracks , 1998 .

[48]  T. C. Lindley,et al.  The effect of porosity on the fatigue life of cast aluminium-silicon alloys , 2004 .

[49]  M. A. Przystupa,et al.  Characterizations of pore and constituent particle populations in 7050-T7451 aluminum plate alloys , 1998 .

[50]  K. Chan,et al.  Roles of microstructure in fatigue crack initiation , 2010 .

[51]  R. Gangloff,et al.  Scientific advances enabling next generation management of corrosion induced fatigue , 2011 .

[52]  William A. Herman,et al.  A SIMPLIFIED LABORATORY APPROACH FOR THE PREDICTION OF SHORT CRACK BEHAVIOR IN ENGINEERING STRUCTURES , 1988 .

[53]  Richard P. Gangloff,et al.  Corrosion fatigue crack propagation in metals , 1990 .

[54]  Dierk Raabe,et al.  Microstructural aspects of crack nucleation during cyclic loading of AA7075-T651 , 2009 .