Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

[1]  C. Romano,et al.  De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides–Baraitser syndrome , 2020, Genetics in Medicine.

[2]  C. Cytrynbaum,et al.  De Novo Variants in the ATPase Module of MORC2 Cause a Neurodevelopmental Disorder with Growth Retardation and Variable Craniofacial Dysmorphism. , 2020, American journal of human genetics.

[3]  Andrei L. Turinsky,et al.  EpigenCentral: Portal for DNA methylation data analysis and classification in rare diseases , 2020, Human mutation.

[4]  S. Scherer,et al.  EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome , 2020 .

[5]  L. Vissers,et al.  De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. , 2020, American journal of human genetics.

[6]  S. Scherer,et al.  DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes , 2020, American journal of human genetics.

[7]  M. Shaw,et al.  Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. , 2020, American journal of human genetics.

[8]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[9]  J. W. Bos,et al.  Biallelic variants in POLR3GL cause endosteal hyperostosis and oligodontia , 2020, European Journal of Human Genetics.

[10]  H. Bjornsson,et al.  Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. , 2019, Human molecular genetics.

[11]  Jeroen F. J. Laros,et al.  Dutch genome diagnostic laboratories accelerated and improved variant interpretation and increased accuracy by sharing data , 2019, Human mutation.

[12]  Andrei L. Turinsky,et al.  Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants , 2019, Clinical Epigenetics.

[13]  Andrei L. Turinsky,et al.  New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome , 2019, BMC Medical Genomics.

[14]  J. Clayton-Smith,et al.  Genotype–phenotype specificity in Menke–Hennekam syndrome caused by missense variants in exon 30 or 31 of CREBBP , 2019, American journal of medical genetics. Part A.

[15]  H. Hakonarson,et al.  Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome , 2019, Clinical Epigenetics.

[16]  I. Krantz,et al.  Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions. , 2019, American journal of human genetics.

[17]  A. V. Vulto-van Silfhout,et al.  De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism. , 2019, American journal of human genetics.

[18]  P. Kemmeren,et al.  Next-generation phenotyping using computer vision algorithms in rare genomic neurodevelopmental disorders , 2018, Genetics in Medicine.

[19]  S. Cheung,et al.  BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes , 2018, Nature Communications.

[20]  A. Haeringen,et al.  Putting genome-wide sequencing in neonates into perspective , 2018, Genetics in Medicine.

[21]  Rondi A. Butler,et al.  An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray , 2018, Genome Biology.

[22]  Louis-Philippe Morency,et al.  OpenFace 2.0: Facial Behavior Analysis Toolkit , 2018, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[23]  Hanxin Lin,et al.  Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. , 2018, American journal of human genetics.

[24]  S. Pajusalu,et al.  Large gene panel sequencing in clinical diagnostics—results from 501 consecutive cases , 2018, Clinical genetics.

[25]  K. Devriendt,et al.  ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder , 2017, American journal of human genetics.

[26]  N. Brunetti‐Pierri,et al.  Expanding the phenotype of DST‐related disorder: A case report suggesting a genotype/phenotype correlation , 2017, American journal of medical genetics. Part A.

[27]  Andrei L. Turinsky,et al.  CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions , 2017, American journal of human genetics.

[28]  B. Frey,et al.  Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder , 2017, Nature Neuroscience.

[29]  R. Pfundt,et al.  Diagnostic exome sequencing in 266 Dutch patients with visual impairment , 2017, European Journal of Human Genetics.

[30]  G. Paré,et al.  The defining DNA methylation signature of Floating-Harbor Syndrome , 2016, Scientific Reports.

[31]  W. Gehring,et al.  Withdrawn/Depressed Behaviors and Error-Related Brain Activity in Youth With Obsessive-Compulsive Disorder. , 2016, Journal of the American Academy of Child and Adolescent Psychiatry.

[32]  R. Pfundt,et al.  CREBBP mutations in individuals without Rubinstein–Taybi syndrome phenotype , 2016, American journal of medical genetics. Part A.

[33]  G. Messina,et al.  When chromatin organisation floats astray: the Srcap gene and Floating–Harbor syndrome , 2016, Journal of Medical Genetics.

[34]  M. Frost,et al.  Neonatal High Bone Mass With First Mutation of the NF‐κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65) , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  A L Turinsky,et al.  NSD1 mutations generate a genome-wide DNA methylation signature , 2015, Nature Communications.

[36]  L. Strand,et al.  Clinical exome sequencing – Norwegian findings. , 2015, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[37]  D. Valle,et al.  GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene , 2015, Human mutation.

[38]  R. Pfundt,et al.  De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment. , 2015, American journal of human genetics.

[39]  M. Roselló,et al.  Novel mutations of NFIX gene causing Marshall-Smith syndrome or Sotos-like syndrome: one gene, two phenotypes , 2015, Pediatric Research.

[40]  J. Couceiro,et al.  The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments , 2015, Chemical science.

[41]  D. Horn,et al.  Expanded spectrum of exon 33 and 34 mutations in SRCAP and follow-up in patients with Floating-Harbor syndrome , 2014, BMC Medical Genetics.

[42]  M. Benelli,et al.  16p11.2 de novo microdeletion encompassing SRCAP gene in a patient with speech impairment, global developmental delay and behavioural problems. , 2014, European journal of medical genetics.

[43]  Jun Huang,et al.  The Human SRCAP Chromatin Remodeling Complex Promotes DNA-End Resection , 2014, Current Biology.

[44]  Andrew Zisserman,et al.  Diagnostically relevant facial gestalt information from ordinary photos , 2014, eLife.

[45]  A. Dufke,et al.  Floating‐Harbor syndrome: SRCAP mutations are not restricted to exon 34 , 2014, Clinical genetics.

[46]  H. Bokhoven,et al.  The genetics of cognitive epigenetics , 2014, Neuropharmacology.

[47]  Christian Gilissen,et al.  A Post‐Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases , 2013, Human mutation.

[48]  S. Horvath DNA methylation age of human tissues and cell types , 2013, Genome Biology.

[49]  A. Fischer,et al.  Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. , 2013, Human molecular genetics.

[50]  A. Hoischen,et al.  The phenotype of Floating-Harbor syndrome: clinical characterization of 52 individuals with mutations in exon 34 of SRCAP , 2013, Orphanet Journal of Rare Diseases.

[51]  Angela D. Wilkins,et al.  An AT-Hook Domain in MeCP2 Determines the Clinical Course of Rett Syndrome and Related Disorders , 2013, Cell.

[52]  A. Munnich,et al.  Not All Floating‐Harbor Syndrome Cases are Due to Mutations in Exon 34 of SRCAP , 2013, Human mutation.

[53]  R. Weksberg,et al.  Cross-reactive DNA microarray probes lead to false discovery of autosomal sex-associated DNA methylation. , 2012, American journal of human genetics.

[54]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[55]  Gabriele Gillessen-Kaesbach,et al.  Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. , 2012, American journal of human genetics.

[56]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[57]  N. Carter,et al.  Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall-Smith syndrome. , 2010, American journal of human genetics.

[58]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[59]  Manuel Corpas,et al.  DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. , 2009, American journal of human genetics.

[60]  J. Chrivia,et al.  The Chromatin Remodeling Protein, SRCAP, Is Critical for Deposition of the Histone Variant H2A.Z at Promoters* , 2007, Journal of Biological Chemistry.

[61]  A. Rustighi,et al.  The second AT-hook of the architectural transcription factor HMGA2 is determinant for nuclear localization and function , 2007, Nucleic acids research.

[62]  J. Gustafsson,et al.  EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation , 2005, Nucleic acids research.